
DB2® DB2 Universal Database for z/OS

Application Programming

Guide and Reference

FOR JAVA
™

Version 8

SC18-7414-03

���

DB2® DB2 Universal Database for z/OS

Application Programming

Guide and Reference

FOR JAVA
™

Version 8

SC18-7414-03

���

Note

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

333.

Fourth Edition, Softcopy Only (February 2006)

This edition applies to Version 8 of IBM DB2 Universal Database for z/OS (DB2 UDB for z/OS), product number

5625-DB2, and to any subsequent releases until otherwise indicated in new editions. Make sure you are using the

correct edition for the level of the product.

This softcopy version is based on the printed edition of the book and includes the changes indicated in the printed

version by vertical bars. Additional changes made to this softcopy version of the book since the hardcopy book was

published are indicated by the hash (#) symbol in the left-hand margin. Editorial changes that have no technical

significance are not noted.

This and other books in the DB2 for z/OS library are periodically updated with technical changes. These updates

are made available to licensees of the product on CD-ROM and on the Web (currently at

www.ibm.com/software/data/db2/zos/library.html). Check these resources to ensure that you are using the most

current information.

© Copyright International Business Machines Corporation 1998, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this book . ix

Who should read this book . ix

Terminology and citations . ix

How to read the syntax diagrams . ix

Accessibility . xi

How to send your comments . xi

Summary of changes to this book . xiii

Chapter 1. Introduction to Java application support 1

Chapter 2. JDBC application programming . 5

Basic JDBC application programming concepts (for all DB2 UDB for z/OS JDBC drivers) 5

Basic steps in writing a JDBC application . 5

Java packages for JDBC support . 8

Variables in JDBC applications . 8

How JDBC applications connect to a data source . 8

Connecting to a data source using the DriverManager interface with the DB2 Universal JDBC Driver 10

Connecting to a data source using the DataSource interface 12

How to determine which type of DB2 Universal JDBC Driver connectivity to use 14

Setting the isolation level for a JDBC transaction . 15

JDBC connection objects . 16

Committing or rolling back JDBC transactions . 16

Closing a connection to a JDBC data source . 16

JDBC interfaces for executing SQL . 17

Creating and modifying DB2 objects using the Statement.executeUpdate method 17

Retrieving data from DB2 tables using the Statement.executeQuery method 18

Updating data in DB2 tables using the PreparedStatement.executeUpdate method 19

Retrieving data from DB2 using the PreparedStatement.executeQuery method 20

Calling stored procedures using CallableStatement methods 21

Handling an SQLException under the DB2 Universal JDBC Driver 22

Handling an SQLWarning under the DB2 Universal JDBC Driver 26

Advanced JDBC application programming concepts . 27

LOBs in JDBC applications with the DB2 Universal JDBC Driver 28

Java data types for retrieving or updating LOB column data in JDBC applications 29

ROWIDs in JDBC with the DB2 Universal JDBC Driver . 31

Distinct types in JDBC applications . 32

Savepoints in JDBC applications . 33

Retrieving identity column values in JDBC applications 34

Retrieving multiple result sets from a stored procedure in a JDBC application 36

Learning about a ResultSet using ResultSetMetaData methods 38

Learning about a data source using DatabaseMetaData methods 39

Learning about parameters in a PreparedStatement using ParameterMetaData methods 40

Making batch updates in JDBC applications . 41

Making batch queries in JDBC applications . 43

Retrieving information from a BatchUpdateException . 44

Characteristics of a JDBC ResultSet under the DB2 Universal JDBC Driver 45

Specifying updatability, scrollability, and holdability for ResultSets in JDBC applications 46

Creating and deploying DataSource objects . 49

Providing extended client information to the DB2 server with the DB2 Universal JDBC Driver 50

System monitoring for the DB2 Universal JDBC Driver . 51

JDBC application programming concepts for the JDBC/SQLJ Driver for OS/390 and z/OS 53

Connecting to a data source using the DriverManager interface with a JDBC/SQLJ Driver for OS/390 and

z/OS . 54

Handling an SQLException under the JDBC/SQLJ Driver for OS/390 and z/OS 55

© Copyright IBM Corp. 1998, 2006 iii

||

||

||
||

||

##

||
##

Handling an SQLWarning under the JDBC/SQLJ Driver for OS/390 and z/OS 58

Using LOBs in JDBC applications with the JDBC/SQLJ Driver for OS/390 and z/OS 58

Using ROWIDs with the JDBC/SQLJ Driver for OS/390 and z/OS 59

Using graphic string constants in JDBC applications . 60

Chapter 3. SQLJ application programming . 61

Basic SQLJ application programming concepts . 61

Basic steps in writing an SQLJ application . 61

Java packages for SQLJ support . 64

Variables in SQLJ applications . 64

Comments in an SQLJ application . 66

Connecting to a data source using SQLJ . 66

Setting the isolation level for an SQLJ transaction . 71

Committing or rolling back SQLJ transactions . 71

Savepoints in SQLJ applications . 72

Closing the connection to a data source in an SQLJ application 73

SQL statements in an SQLJ application . 73

Creating and modifying DB2 objects in an SQLJ application 73

How an SQLJ application retrieves data from DB2 tables 74

Using a named iterator in an SQLJ application . 74

Using a positioned iterator in an SQLJ application . 76

Performing positioned UPDATE and DELETE operations in an SQLJ application 78

Multiple open iterators for the same SQL statement in an SQLJ application 81

Multiple open instances of an iterator in an SQLJ application 83

Calling stored procedures in an SQLJ application . 83

Handling SQL errors in an SQLJ application . 84

Handling SQL warnings in an SQLJ application . 85

Advanced SQLJ application programming concepts . 85

Using SQLJ and JDBC in the same application . 86

LOBs in SQLJ applications with the DB2 Universal JDBC Driver 89

Java data types for retrieving or updating LOB column data in SQLJ applications 89

Using LOBs in SQLJ applications with the JDBC/SQLJ Driver for OS/390 and z/OS 91

ROWIDs in SQLJ with the DB2 Universal JDBC Driver . 92

Using graphic string constants in SQLJ applications . 93

Distinct types in SQLJ applications . 94

Controlling the execution of SQL statements in SQLJ . 95

Retrieving multiple result sets from a stored procedure in an SQLJ application 95

Making batch updates in SQLJ applications . 97

Iterators as passed variables for positioned UPDATE or DELETE operations in an SQLJ application 100

Using scrollable iterators in an SQLJ application . 102

Chapter 4. JDBC and SQLJ reference . 107

Comparison of driver support for JDBC APIs . 107

Java, JDBC, and SQL data types . 127

SQLJ syntax . 132

SQLJ clause . 132

SQLJ host-expression . 132

SQLJ implements-clause . 133

SQLJ with-clause . 134

SQLJ connection-declaration-clause . 135

SQLJ iterator-declaration-clause . 136

SQLJ executable-clause . 137

SQLJ context-clause . 138

SQLJ statement-clause . 138

SQLJ SET-TRANSACTION-clause . 140

SQLJ assignment-clause . 140

SQLJ iterator-conversion-clause . 141

sqlj.runtime reference . 142

Summary of interfaces and classes in the sqlj.runtime package 142

sqlj.runtime.ConnectionContext interface . 143

iv Application Programming Guide and Reference for Java™

||

||

||

||
||

||

||
||

||
||

##
##
##

sqlj.runtime.ForUpdate interface . 147

sqlj.runtime.NamedIterator interface . 147

sqlj.runtime.PositionedIterator interface . 148

sqlj.runtime.ResultSetIterator interface . 148

sqlj.runtime.Scrollable interface . 151

sqlj.runtime.AsciiStream class . 153

sqlj.runtime.BinaryStream class . 154

sqlj.runtime.CharacterStream class . 154

sqlj.runtime.ExecutionContext class . 155

sqlj.runtime.SQLNullException class . 163

sqlj.runtime.StreamWrapper class . 163

sqlj.runtime.UnicodeStream class . 164

DB2 Universal JDBC Driver reference information . 165

DB2 Universal JDBC Driver extensions to JDBC . 165

JDBC differences between the DB2 Universal JDBC Driver and other DB2 JDBC drivers 179

SQLJ differences between the DB2 Universal JDBC Driver and other DB2 JDBC drivers 182

Error codes issued by the DB2 Universal JDBC Driver . 183

SQLSTATEs issued by the DB2 Universal JDBC Driver 183

How to find DB2 Universal JDBC Driver version and environment information 184

Properties for the DB2 Universal JDBC Driver . 185

DataSource properties for the JDBC/SQLJ 2.0 Driver for OS/390 and z/OS 196

Chapter 5. Creating Java stored procedures and user-defined functions 199

Setting up the environment for interpreted Java routines . 199

Prerequisites for interpreted Java routines . 199

Setting up the WLM application environment for interpreted Java routines 200

Setting the run-time environment for interpreted Java stored procedures 202

Defining a Java routine to DB2 . 206

Defining a JAR file for a Java routine to DB2 . 210

Calling SQLJ.INSTALL_JAR . 211

Calling SQLJ.REPLACE_JAR . 211

Calling SQLJ.REMOVE_JAR . 212

Calling SQLJ.DB2_INSTALL_JAR . 213

Calling SQLJ.DB2_REPLACE_JAR . 213

Writing a Java routine . 214

Differences between Java routines and stand-alone Java programs 214

Differences between Java routines and other routines . 214

Using static and non-final variables in a Java routine . 215

Writing a Java stored procedure to return result sets . 216

Testing a Java routine . 218

Chapter 6. Preparing and running JDBC and SQLJ programs 219

Preparing JDBC programs for execution . 219

Preparing SQLJ programs for execution under the DB2 Universal JDBC Driver 219

Translating and compiling SQLJ source code under the DB2 Universal JDBC Driver 220

Customizing an SQLJ serialized profile under the DB2 Universal JDBC Driver 224

Binding packages after running db2sqljcustomize . 235

Preparing SQLJ programs for execution under the JDBC/SQLJ Driver for OS/390 and z/OS 239

Translating and compiling SQLJ source code . 239

Customizing an SQLJ serialized profile under the JDBC/SQLJ Driver for OS/390 and z/OS 242

Binding packages and plans after running db2profc . 244

Preparing Java routines for execution . 245

Preparing interpreted Java routines with no SQLJ statements 245

Preparing interpreted Java routines with SQLJ statements 246

Creating JAR files for Java routines . 247

Example of preparing a Java routine for execution . 248

Running JDBC and SQLJ programs . 249

Chapter 7. Installing the DB2 Universal JDBC Driver 251

Installing the DB2 Universal JDBC Driver as part of a DB2 installation 251

Contents v

##
##
##
##
##
##
##
##
##
##
##
##

##

||
||
||
||
||
||
||
||

||

||
||

||

Loading the DB2 Universal JDBC Driver libraries . 252

Setting environment variables for the DB2 Universal JDBC Driver 252

DB2 Universal JDBC Driver configuration properties customization 253

Enabling the DB2-supplied stored procedures and defining the tables used by the DB2 Universal JDBC Driver 261

Binding the packages for the DB2 Universal JDBC Driver 264

DB2T4XAIndoubtUtil for distributed transactions with DB2 UDB for OS/390 and z/OS Version 7 servers . . 267

Converting JDBC/SQLJ Driver for OS/390 and z/OS serialized profiles for the DB2 Universal JDBC Driver 269

Enabling retrieval of DBCLOB columns with LOB locators on DB2 UDB for OS/390 and z/OS servers . . . 271

Verifying the installation of the DB2 Universal JDBC Driver 272

Installing the z/OS Application Connectivity to DB2 for z/OS feature 274

Loading the z/OS Application Connectivity to DB2 for z/OS libraries 276

Setting environment variables for the z/OS Application Connectivity to DB2 for z/OS feature 276

Chapter 8. Installing the JDBC/SQLJ Driver for OS/390 and z/OS 279

Loading the JDBC and SQLJ libraries . 279

Setting DB2 subsystem parameters for SQLJ support . 280

Setting environment variables for the JDBC/SQLJ Driver for OS/390 and z/OS 280

The SQLJ/JDBC run-time properties file . 281

Properties in the JDBC/SQLJ Driver for OS/390 and z/OS SQLJ/JDBC run-time properties file 281

Customizing the JDBC profile (optional) . 286

Syntax . 286

Parameter descriptions . 286

Output . 287

Binding the DBRMs . 287

Verifying the installation of the JDBC/SQLJ Driver for OS/390 and z/OS 288

Chapter 9. JDBC and SQLJ security . 289

Security under the DB2 Universal JDBC Driver . 289

User ID and password security under the DB2 Universal JDBC Driver 290

User ID-only security under the DB2 Universal JDBC Driver 291

Encrypted user ID security and encrypted password security under the DB2 Universal JDBC Driver 292

Kerberos security under the DB2 Universal JDBC Driver . 293

Security for preparing SQLJ applications with the DB2 Universal JDBC Driver 296

Security under the JDBC/SQLJ Driver for OS/390 and z/OS 298

Determining an authorization ID with the JDBC/SQLJ Driver for OS/390 and z/OS 298

DB2 attachment types and security . 298

Chapter 10. JDBC and SQLJ connection pooling support 299

Chapter 11. Universal Driver type 4 connectivity JDBC and SQLJ distributed

transaction support . 301

Example of a distributed transaction that uses JTA methods 302

Chapter 12. JDBC and SQLJ global transaction support 307

Chapter 13. Multiple z/OS context support in JDBC/SQLJ Driver for OS/390 and z/OS 309

Connecting when multiple z/OS context support is not enabled 309

Connecting when multiple z/OS context support is enabled 310

Enabling multiple z/OS context support . 310

Multiple context performance . 310

Connection sharing . 310

Chapter 14. DB2 Universal JDBC Driver support for connection concentrator and

Sysplex workload balancing . 311

JDBC connection concentrator and Sysplex workload balancing 311

Example of enabling the DB2 Universal JDBC Driver connection concentrator and Sysplex workload balancing 312

Techniques for monitoring DB2 Universal JDBC Driver connection concentrator and Sysplex workload balancing 313

Chapter 15. Diagnosing JDBC and SQLJ problems 317

vi Application Programming Guide and Reference for Java™

||
||
||
||
||
||
||
||
||
||
||
||

||

|
||
||

#
##
##
##
##

JDBC and SQLJ problem diagnosis with the DB2 Universal JDBC Driver 317

Example of using configuration properties to start a JDBC trace 319

Example of a trace program under the DB2 Universal JDBC Driver 320

Formatting trace data for C/C++ native driver code with the DB2 Universal JDBC Driver 324

Diagnosing SQLJ problems with the JDBC/SQLJ Driver for OS/390 and z/OS 325

Formatting trace data with the JDBC/SQLJ Driver for OS/390 and z/OS 326

Running utilities to format diagnostic data . 326

Appendix. Special considerations for CICS applications 329

Choosing parameter values for the SQLJ/JDBC run-time properties file 329

Choosing parameter values for the db2genJDBC utility . 330

Choosing the number of cursors for JDBC result sets . 330

Setting environment variables for the CICS environment . 330

Connecting to DB2 in the CICS environment . 330

Commit and rollback processing in CICS SQLJ and JDBC applications 331

Abnormal terminations in the CICS attachment facility . 331

Running traces in a CICS environment . 331

Notices . 333

Programming interface information . 334

Trademarks . 335

Glossary . 337

Bibliography . 371

Index . 379

Contents vii

##

||

viii Application Programming Guide and Reference for Java™

About this book

This book describes DB2® UDB for z/OS® support for Java™. This support lets you

access relational databases from Java application programs.

Who should read this book

This book is for the following users:

v DB2 UDB for z/OS application developers who are familiar with Structured

Query Language (SQL) and who know the Java programming language.

v DB2 UDB for z/OS system programmers who are installing JDBC and SQLJ

support.

Terminology and citations

In this information, DB2 Universal Database™ for z/OS is referred to as "DB2 UDB

for z/OS." In cases where the context makes the meaning clear, DB2 UDB for z/OS

is referred to as "DB2." When this information refers to titles of books in this

library, a short title is used. (For example, "See DB2 SQL Reference" is a citation to

IBM® DB2 Universal Database for z/OS SQL Reference.)

When referring to a DB2 product other than DB2 UDB for z/OS, this information

uses the product’s full name to avoid ambiguity.

The following terms are used as indicated:

DB2 Represents either the DB2 licensed program or a particular DB2 subsystem.

OMEGAMON

Refers to any of the following products:

v IBM Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS

v IBM Tivoli OMEGAMON XE for DB2 Performance Monitor on z/OS

v IBM DB2 Performance Expert for Multiplatforms and Workgroups

v IBM DB2 Buffer Pool Analyzer for z/OS

C, C++, and C language

Represent the C or C++ programming language.

CICS® Represents CICS Transaction Server for z/OS or CICS Transaction Server

for OS/390®.

IMS™ Represents the IMS Database Manager or IMS Transaction Manager.

MVS™

Represents the MVS element of the z/OS operating system, which is

equivalent to the Base Control Program (BCP) component of the z/OS

operating system.

RACF®

Represents the functions that are provided by the RACF component of the

z/OS Security Server.

How to read the syntax diagrams

The following rules apply to the syntax diagrams that are used in this book:

© Copyright IBM Corp. 1998, 2006 ix

#
#
#
#
#
#

v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.

The ��─── symbol indicates the beginning of a statement.

The ───� symbol indicates that the statement syntax is continued on the next

line.

The �─── symbol indicates that a statement is continued from the previous line.

The ───�� symbol indicates the end of a statement.

v Required items appear on the horizontal line (the main path).

�� required_item ��

v Optional items appear below the main path.

�� required_item

optional_item
 ��

If an optional item appears above the main path, that item has no effect on the

execution of the statement and is used only for readability.

��
 optional_item

required_item

��

v If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main

path.

�� required_item required_choice1

required_choice2
 ��

If choosing one of the items is optional, the entire stack appears below the main

path.

�� required_item

optional_choice1

optional_choice2

 ��

If one of the items is the default, it appears above the main path and the

remaining choices are shown below.

��

required_item
 default_choice

optional_choice

optional_choice

��

v An arrow returning to the left, above the main line, indicates an item that can be

repeated.

��

required_item

�

repeatable_item

��

If the repeat arrow contains a comma, you must separate repeated items with a

comma.

x Application Programming Guide and Reference for Java™

��

required_item

�

 ,

repeatable_item

��

A repeat arrow above a stack indicates that you can repeat the items in the

stack.

v Keywords appear in uppercase (for example, FROM). They must be spelled exactly

as shown. Variables appear in all lowercase letters (for example, column-name).

They represent user-supplied names or values.

v If punctuation marks, parentheses, arithmetic operators, or other such symbols

are shown, you must enter them as part of the syntax.

Accessibility

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use software products. The major accessibility

features in z/OS products, including DB2 UDB for z/OS, enable users to:

v Use assistive technologies such as screen reader and screen magnifier software

v Operate specific or equivalent features by using only a keyboard

v Customize display attributes such as color, contrast, and font size

Assistive technology products, such as screen readers, function with the DB2 UDB

for z/OS user interfaces. Consult the documentation for the assistive technology

products for specific information when you use assistive technology to access these

interfaces.

Online documentation for Version 8 of DB2 UDB for z/OS is available in the

Information management software for z/OS solutions information center, which is

an accessible format when used with assistive technologies such as screen reader

or screen magnifier software. The Information management software for z/OS

solutions information center is available at the following Web site:

http://publib.boulder.ibm.com/infocenter/dzichelp

How to send your comments

Your feedback helps IBM to provide quality information. Please send any

comments that you have about this book or other DB2 UDB for z/OS

documentation. You can use the following methods to provide comments:

v Send your comments by e-mail to db2pubs@vnet.ibm.com and include the name

of the product, the version number of the product, and the number of the book.

If you are commenting on specific text, please list the location of the text (for

example, a chapter and section title, page number, or a help topic title).

v You can also send comments from the Web. Visit the library Web site at:

www.ibm.com/software/db2zos/library.html

This Web site has a feedback page that you can use to send comments.

v Print and fill out the reader comment form located at the back of this book. You

can give the completed form to your local IBM branch office or IBM

representative, or you can send it to the address printed on the reader comment

form.

About this book xi

xii Application Programming Guide and Reference for Java™

Summary of changes to this book

The principle changes to this book are:

v Chapter 2, “JDBC application programming,” on page 5 contains new

explanations and examples of JDBC methods. It also contains descriptions of

JDBC 2.0 and selected JDBC 3.0 functions.

v Chapter 3, “SQLJ application programming,” on page 61 contains explanations of

new SQLJ capabilities that are associated with JDBC 2.0 and JDBC 3.0 functions.

v Chapter 5, “Creating Java stored procedures and user-defined functions”

contains information on writing and running Java routines.

v “Special considerations for CICS applications” contains information on running

JDBC™ and SQLJ programs in the CICS environment.

v Information on the DB2 Universal JDBC Driver has been added.

v Information on compiled Java stored procedures has been removed.

v VisualAge for Java information has been deleted.

© Copyright IBM Corp. 1998, 2006 xiii

|
|
|

|
|

|

|

|

xiv Application Programming Guide and Reference for Java™

Chapter 1. Introduction to Java application support

DB2® Universal Database provides driver support for client applications and

applets that are written in Java™ using JDBC, and for embedded SQL for Java

(SQLJ).

JDBC is an application programming interface (API) that Java applications use to

access relational databases. DB2 Universal Database™ support for JDBC lets you

write Java applications that access local DB2 data or remote relational data on a

server that supports DRDA®.

SQLJ provides support for embedded static SQL in Java applications. SQLJ was

initially developed by IBM®, Oracle®, and Tandem to complement the dynamic

SQL JDBC model with a static SQL model.

In general, Java applications use JDBC for dynamic SQL and SQLJ for static SQL.

However, because SQLJ can inter-operate with JDBC, an application program can

use JDBC and SQLJ within the same unit of work.

This topic discusses the Java application development environment provided by

DB2 Universal Database.

According to the JDBC specification, there are four types of JDBC driver

architectures:

Type 1

Drivers that implement the JDBC API as a mapping to another data access API,

such as Open Database Connectivity (ODBC). Drivers of this type are generally

dependent on a native library, which limits their portability. The JDBC-ODBC

Bridge driver is an example of a type 1 driver.

Type 2

Drivers that are written partly in the Java programming language and partly in

native code. The drivers use a native client library specific to the data source to

which they connect. Because of the native code, their portability is limited.

Type 3

Drivers that use a pure Java client and communicate with a server using a

database-independent protocol. The server then communicates the client’s

requests to the data source.

Type 4

Drivers that are pure Java and implement the network protocol for a specific

data source. The client connects directly to the data source.

DB2 UDB for OS/390® or z/OS® supports a type 2 driver and a driver that

combines type 2 and type 4 JDBC implementations. The drivers that are supported

in DB2 UDB for OS/390 or z/OS are:

 DB2 Universal JDBC driver (type 2 and type 4):

 The DB2 Universal JDBC Driver is a single driver that includes JDBC type 2 and

JDBC type 4 behavior, as well as SQLJ support. When an application loads the DB2

Universal JDBC Driver, a single driver instance is loaded for type 2 and type 4

implementations. The application can make type 2 and type 4 connections using

© Copyright IBM Corp. 1998, 2006 1

this single driver instance. The type 2 and type 4 connections can be made

concurrently. DB2 Universal JDBC Driver type 2 driver behavior is referred to as

DB2 Universal JDBC Driver type 2 connectivity. DB2 Universal JDBC Driver type 4

driver behavior is referred to as DB2 Universal JDBC Driver type 4 connectivity.

The DB2 Universal JDBC Driver is an entirely new driver, rather than a follow-on

to any other DB2 JDBC drivers. Therefore, you can expect some differences in

behavior between this driver and other drivers.

The DB2 Universal JDBC Driver supports these JDBC and SQLJ functions:

v Most of the methods that are described in the JDBC 1.2 and JDBC 2.0

specifications, and some of the methods that are described in the JDBC 3.0

specifications. See “Comparison of driver support for JDBC APIs” on page 107.

v SQLJ statements that perform equivalent functions to all JDBC methods.

v Connections that are enabled for connection pooling. WebSphere Application

Server or another application server does the connection pooling.

v Implementation of Java user-defined functions and stored procedures (Universal

Driver type 2 connectivity only).

v Global transactions that run under WebSphere® Application Server Version 5.0

and above.

v Support for distributed transaction management. This support implements the

Java 2 Platform, Enterprise Edition (J2EE) Java Transaction Service (JTS) and Java

Transaction API (JTA) specifications, which conform to the X/Open standard for

global transactions (Distributed Transaction Processing: The XA Specification,

available from http://www.opengroup.org(Universal Driver type 4 connectivity

to DB2 UDB for OS/390 Version 7, DB2 UDB for z/OS Version 8, or DB2 UDB

for Linux, UNIX and Windows).

In general, you should use Universal Driver type 2 connectivity for Java programs

that run on the same z/OS system or zSeries® logical partition (LPAR) as the target

DB2 subsystem. Use Universal Driver type 4 connectivity for Java programs that

run on a different z/OS system or LPAR from the target DB2 subsystem.

For z/OS systems or LPARs that do not have DB2 UDB for z/OS, the z/OS

Application Connectivity to DB2 for z/OS optional feature can be installed to

provide Universal Driver type 4 connectivity to a DB2 UDB for z/OS or DB2 UDB

for Linux, UNIX, and Windows server.

To use the DB2 Universal JDBC Driver, you need Java 2 Technology Edition, SDK

1.3.1 or higher. To implement Java stored procedures or user-defined functions, you

need Java 2 Technology Edition, SDK 1.3.1, SDK 1.4.1, or higher.

 JDBC/SQLJ Driver for OS/390 and z/OS with JDBC 2.0 support (JDBC/SQLJ 2.0

Driver for OS/390 and z/OS):

 The JDBC/SQLJ 2.0 Driver for OS/390 and z/OS is a type 2 driver that contains

most of the functions that are described in the JDBC 1.2 specification. This driver

also includes some of the functions that are described in the JDBC 2.0 specification.

See “Comparison of driver support for JDBC APIs” on page 107 for a list of the

JDBC methods that the JDBC/SQLJ 2.0 Driver for OS/390 and z/OS supports.

The JDBC/SQLJ 2.0 Driver for OS/390 and z/OS supports these functions:

v Global transactions that run under WebSphere® Application Server Version 4.0

and above

v Implementation of Java user-defined functions and stored procedures

v SQLJ statements that perform equivalent functions to all JDBC methods

2 Application Programming Guide and Reference for Java™

v Connection pooling

To use this driver, you need Java 2 Technology Edition, SDK 1.3 or higher. To

implement Java stored procedures or user-defined functions, you need Java 2

Technology Edition, SDK 1.3.1, SDK 1.4.1 or higher.

The JDBC/SQLJ Driver for OS/390 and z/OS will not be supported in future

releases of DB2. You should therefore consider moving to the DB2 Universal JDBC

Driver.

Chapter 1. Introduction to Java application support 3

|
|
|

4 Application Programming Guide and Reference for Java™

Chapter 2. JDBC application programming

The following topics explain DB2 UDB for z/OS JDBC application support:

v “Basic JDBC application programming concepts (for all DB2 UDB for z/OS JDBC

drivers)”

v “Advanced JDBC application programming concepts” on page 27

v “JDBC application programming concepts for the JDBC/SQLJ Driver for OS/390

and z/OS” on page 53

Basic JDBC application programming concepts (for all DB2 UDB for

z/OS JDBC drivers)

The following topics contain basic information about writing JDBC applications

that applies to all DB2 UDB for z/OS drivers:

v “Basic steps in writing a JDBC application”

v “Java packages for JDBC support” on page 8

v “Variables in JDBC applications” on page 8

v “How JDBC applications connect to a data source” on page 8

v “Connecting to a data source using the DriverManager interface with the DB2

Universal JDBC Driver” on page 10

v “Connecting to a data source using the DataSource interface” on page 12

v “How to determine which type of DB2 Universal JDBC Driver connectivity to

use” on page 14

v “Setting the isolation level for a JDBC transaction” on page 15

v “JDBC connection objects” on page 16

v “Committing or rolling back JDBC transactions” on page 16

v “Closing a connection to a JDBC data source” on page 16

v “JDBC interfaces for executing SQL” on page 17

v “Creating and modifying DB2 objects using the Statement.executeUpdate

method” on page 17

v “Retrieving data from DB2 tables using the Statement.executeQuery method” on

page 18

v “Updating data in DB2 tables using the PreparedStatement.executeUpdate

method” on page 19

v “Retrieving data from DB2 using the PreparedStatement.executeQuery method”

on page 20

v “Calling stored procedures using CallableStatement methods” on page 21

v “Handling an SQLException under the DB2 Universal JDBC Driver” on page 22

v “Handling an SQLWarning under the DB2 Universal JDBC Driver” on page 26

Basic steps in writing a JDBC application

Writing a JDBC application has much in common with writing an SQL application

in any other language: In general, you need to do the following things:

v Access the Java™ packages that contain JDBC methods.

v Declare variables for sending data to or retrieving data from DB2® tables.

v Connect to a data source.

v Execute SQL statements.

v Handle SQL errors and warnings.

v Disconnect from the data source.

Although the tasks that you need to perform are similar to those in other

languages, the way that you execute those tasks is somewhat different.

© Copyright IBM Corp. 1998, 2006 5

Figure 1 is a simple program that demonstrates each task. This program runs on

the DB2 Universal JDBC Driver.

import java.sql.*; �1�

public class EzJava

{

 public static void main(String[] args)

 {

 String urlPrefix = "jdbc:db2:";

 String url;

 String empNo; �2�

 Connection con;

 Statement stmt;

 ResultSet rs;

 System.out.println ("**** Enter class EzJava");

 // Check the that first argument has the correct form for the portion

 // of the URL that follows jdbc:db2:, as described

 // in the Connecting to a data source using the DriverManager

 // interface with the DB2 Universal JDBC Driver topic.

 // For example, for Universal Driver type 2 connectivity,

 // args[0] might be MVS1DB2M. For Universal

 // Driver type 4 connectivity, args[0] might

 // be //stlmvs1:10110/MVS1DB2M.

 if (args.length==0)

 {

 System.err.println ("Invalid value. First argument appended to "+

 "jdbc:db2: must specify a valid URL.");

 System.exit(1);

 }

 url = urlPrefix + args[0];

 try

 {

 // Load the DB2 Universal JDBC Driver

 Class.forName("com.ibm.db2.jcc.DB2Driver"); �3a�

 System.out.println("**** Loaded the JDBC driver");

 // Create the connection using the DB2 Universal JDBC Driver

 con = DriverManager.getConnection (url); �3b�

 // Commit changes manually

 con.setAutoCommit(false);

 System.out.println("**** Created a JDBC connection to the data source");

 // Create the Statement

 stmt = con.createStatement(); �4a�

 System.out.println("**** Created JDBC Statement object");

 // Execute a query and generate a ResultSet instance

 rs = stmt.executeQuery("SELECT EMPNO FROM EMPLOYEE"); �4b�

 System.out.println("**** Creaed JDBC ResultSet object");

 // Print all of the employee numbers to standard output device

 while (rs.next()) {

 empNo = rs.getString(1);

 System.out.println("Employee number = " + empNo);

 }

 System.out.println("**** Fetched all rows from JDBC ResultSet");

Figure 1. Simple JDBC application (Part 1 of 2)

6 Application Programming Guide and Reference for Java™

Notes to Figure 1 on page 6:

 �1� This statement imports the java.sql package, which contains the JDBC core API.

For information on other Java packages that you might need to access, see

“Java packages for JDBC support” on page 8.

�2� String variable empNo performs the function of a host variable. That is, it is

used to hold data retrieved from an SQL query. See “Variables in JDBC

applications” on page 8 for more information.

�3a�and

�3b�

These two sets of statements demonstrate how to connect to a data source using

one of two available interfaces. See “How JDBC applications connect to a data

source” on page 8 for more details.

�4a� and

�4b�

These two sets of statements demonstrate how to perform a SELECT in JDBC.

For information on how to perform other SQL operations, see “JDBC interfaces

for executing SQL” on page 17.

�5� This try/catch block demonstrates the use of the SQLException class for SQL

error handling. For more information on handling SQL errors, see “Handling an

SQLException under the DB2 Universal JDBC Driver” on page 22 and

“Handling an SQLException under the JDBC/SQLJ Driver for OS/390 and

z/OS” on page 55. For information on handling SQL warnings, see “Handling

an SQLWarning under the DB2 Universal JDBC Driver” on page 26.

�6� This statement disconnects the application from the data source. See “Closing a

connection to a JDBC data source” on page 16.

 // Close the ResultSet

 rs.close();

 System.out.println("**** Closed JDBC ResultSet");

 // Close the Statement

 stmt.close();

 System.out.println("**** Closed JDBC Statement");

 // Connection must be on a unit-of-work boundary to allow close

 con.commit();

 System.out.println ("**** Transaction committed");

 // Close the connection

 con.close(); �6�

 System.out.println("**** Disconnected from data source");

 System.out.println("**** JDBC Exit from class EzJava - no errors");

 }

 catch (ClassNotFoundException e)

 {

 System.err.println("Could not load JDBC driver");

 System.out.println("Exception: " + e);

 e.printStackTrace();

 }

 catch(SQLException ex) �5�

 {

 System.err.println("SQLException information");

 while(ex!=null) {

 System.err.println ("Error msg: " + ex.getMessage());

 System.err.println ("SQLSTATE: " + ex.getSQLState());

 System.err.println ("Error code: " + ex.getErrorCode());

 ex.printStackTrace();

 ex = ex.getNextException(); // For drivers that support chained exceptions

 }

 }

 } // End main

} // End EzJava

Figure 1. Simple JDBC application (Part 2 of 2)

Chapter 2. JDBC application programming 7

Java packages for JDBC support

Before you can invoke JDBC methods, you need to be able to access all or parts of

various Java™ packages that contain those methods. You can do that either by

importing the packages or specific classes, or by using the fully-qualified class

names. You might need the following packages or classes for your JDBC program:

java.sql

Contains the core JDBC API.

javax.naming

Contains classes and interfaces for Java Naming and Directory Interface

(JNDI), which is often used for implementing a DataSource.

javax.sql

Contains JDBC 2.0 standard extensions.

com.ibm.db2.jcc

Contains the DB2-specific implementation of JDBC for the DB2 Universal

JDBC driver and some functions of the JDBC/SQLJ Driver for OS/390®.

COM.ibm.db2os390.sqlj.jdbc.DB2SQLJDriver

Contains some functions of the DB2-specific implementation of JDBC/SQLJ

Driver for OS/390.

Variables in JDBC applications

As in any other Java™ application, when you write JDBC applications, you declare

variables. In Java applications, those variables are known as Java identifiers. Some

of those identifiers have the same function as host variables in other languages:

they hold data that you pass to or retrieve from DB2® tables. Identifier empNo in the

sample program in “Basic steps in writing a JDBC application” on page 5 is an

example of a Java String identifier that holds data that you retrieve from a CHAR

column of a DB2 table.

Your choice of Java data types can affect performance because DB2 picks better

access paths when the data types of your Java variables map closely to the DB2

data types. “Java, JDBC, and SQL data types” on page 127 shows the

recommended mappings of Java data types and JDBC data types to SQL data

types.

How JDBC applications connect to a data source

Before you can execute SQL statements in any SQL program, you must connect to

a database server. In JDBC, a database server is known as a data source.

Figure 2 on page 9 shows how a Java™ application connects to a data source for a

type 2 driver or DB2 Universal JDBC Driver type 2 connectivity.

8 Application Programming Guide and Reference for Java™

Figure 3 shows how a Java application connects to a data source for DB2 Universal

JDBC Driver type 4 connectivity.

 The way that you connect to a data source depends on the version of JDBC that

you use. Connecting using the DriverManager interface is available for all levels of

JDBC. Connecting using the DataSource interface is available with JDBC 2.0 and

above.

Java application

DriverManager
or

DataSource

Local database
or DB2

subsystem

JDBC driver

Database
server

Figure 2. Java application flow for a type 2 driver or DB2 Universal JDBC Driver type 2

connectivity

Java application

DriverManager
or

DataSource

JDBC driver*

Database
server

*Java byte code executed under JVM

DRDA

Figure 3. Java application flow for DB2 Universal JDBC Driver type 4 connectivity

Chapter 2. JDBC application programming 9

Connecting to a data source using the DriverManager

interface with the DB2 Universal JDBC Driver

A JDBC application can establish a connection to a data source using the JDBC

DriverManager interface, which is part of the java.sql package.

The Java™ application first loads the JDBC driver by invoking the Class.forName

method. After the application loads the driver, it connects to a database server by

invoking the DriverManager.getConnection method.

For the DB2 Universal JDBC Driver, you load the driver by invoking the

Class.forName method with the following argument:

com.ibm.db2.jcc.DB2Driver

For compatibility with previous JDBC drivers, you can use the following argument

instead:

COM.ibm.db2os390.sqlj.jdbc.DB2SQLJDriver

The following code demonstrates loading the DB2 Universal JDBC Driver:

try {

 // Load the DB2® Universal JDBC Driver with DriverManager

 Class.forName("com.ibm.db2.jcc.DB2Driver");

} catch (ClassNotFoundException e) {

 e.printStackTrace();

}

The catch block is used to print an error if the driver is not found.

After you load the driver, you connect to the data source by invoking the

DriverManager.getConnection method. You can use one of the following forms of

getConnection:

getConnection(String url);

getConnection(String url, user, password);

getConnection(String url, java.util.Properties info);

The url argument represents a data source, and indicates what type of JDBC

connectivity you are using.

For DB2 Universal JDBC Driver type 4 connectivity, specify a URL of the following

form:

Syntax for a URL for Universal Driver type 4 connectivity:

�� jdbc:db2: //server

jdbc:db2j:net:

:port
 /database

�

:

property

=

value

;

 ��

For DB2 Universal JDBC Driver type 2 connectivity, specify a URL of one of the

following forms:

Syntax for a URL for Universal Driver type 2 connectivity:

10 Application Programming Guide and Reference for Java™

��

�

�

 jdbc:db2:database

jdbc:db2os390:database

jdbc:db2os390sqlj:database

jdbc:default:connection

:

property

=

value

;

jdbc:db2os390:

jdbc:db2os390sqlj:

property

=

value

;

 ��

The parts of the URL have the following meanings:

jdbc:db2: or jdbc:db2j:net: or jdbc:db2os390: or jdbc:db2os390sqlj: or

jdbc:default:connection

The meanings of the initial portion of the URL are:

jdbc:db2: or jdbc:db2os390: or jdbc:db2os390sqlj:

Indicates that the connection is to a DB2 UDB for z/OS or DB2 UDB

for Linux, UNIX, and Windows server. jdbc:db2os390: and

jdbc:db2os390sqlj: are for compatibility of programs that were written

for the JDBC/SQLJ Driver for OS/390.

db2:default:connection

Indicates that the URL is intended for environments that support an

already-existing connection, such as CICS, IMS™, and stored

procedures.

jdbc:db2j:net:

Indicates that the connection is to a remote IBM® Cloudscape™ server.

server

The domain name or IP address of the database server.

port

The TCP/IP server port number that is assigned to the database server. This is

an integer between 0 and 65535. The default is 446.

database

A name for the database server. This name depends on whether Universal

Driver type 4 connectivity or Universal Driver type 2 connectivity is used.

 For Universal Driver type 4 connectivity:

v If the connection is to a DB2 UDB for z/OS server, database is the DB2

location name that is defined during installation. All characters in the DB2

location name must be uppercase characters. The DB2 Universal JDBC

Driver does not convert lowercase characters in the database value to

uppercase for Universal Driver type 4 connectivity.

You can determine the location name by executing the following SQL

statement on the server:

SELECT CURRENT SERVER FROM SYSIBM.SYSDUMMY1;

v If the connection is to a DB2 UDB for z/OS server, all characters in database

must be uppercase characters.

v If the connection is to a DB2 UDB for Linux, UNIX and Windows server,

database is the database name that is defined during installation.

v If the connection is to an IBM Cloudscape server, the database is the

fully-qualified name of the file that contains the database. This name must

be enclosed in double quotation marks ("). For example:

"c:/databases/testdb"

Chapter 2. JDBC application programming 11

For Universal Driver type 2 connectivity:

v database is a location name that is defined in the SYSIBM.LOCATIONS

catalog table.

All characters in the DB2 location name must be uppercase characters.

However, when the connection is to a DB2 UDB for z/OS server, the DB2

Universal JDBC Driver converts lowercase characters in the database value

to uppercase for Universal Driver type 2 connectivity.

v If the connection is to a DB2 UDB for iSeries server, all characters in database

must be uppercase characters.

property=value;

A property for the JDBC connection. For the definitions of these properties, see

“Properties for the DB2 Universal JDBC Driver” on page 185.

The info argument is an object of type java.util.Properties that contains a set of

driver properties for the connection. Specifying the info argument is an alternative

to specifying property=value strings in the URL. See “Properties for the DB2

Universal JDBC Driver” on page 185 for the properties that you can specify.

Specifying a user ID and password for a connection: There are several ways to specify a

user ID and password for a connection:

v Use the form of the getConnection method that specifies url with

property=value; clauses, and include the user and password properties in the

URL.

v Use the form of the getConnection method that specifies user and password.

v Use the form of the getConnection method that specifies info, after setting the

user and password properties in a java.util.Properties object.

Example: Setting the user ID and password in a URL:

String url = "jdbc:db2://sysmvs1.stl.ibm.com:5021/san_jose:" +

 "user=db2adm;password=db2adm;";

 // Set URL for data source

Connection con = DriverManager.getConnection(url);

 // Create connection

Example: Setting the user ID and password in user and password parameters:

String url = "jdbc:db2://sysmvs1.stl.ibm.com:5021/san_jose";

 // Set URL for data source

String user = "db2adm";

String password = "db2adm";

Connection con = DriverManager.getConnection(url, user, password);

 // Create connection

Example: Setting the user ID and password in a java.util.Properties object:

Properties properties = new Properties(); // Create Properties object

properties.put("user", "db2adm"); // Set user ID for connection

properties.put("password", "db2adm"); // Set password for connection

String url = "jdbc:db2://sysmvs1.stl.ibm.com:5021/san_jose";

 // Set URL for data source

Connection con = DriverManager.getConnection(url, properties);

 // Create connection

Connecting to a data source using the DataSource interface

Using DriverManager to connect to a data source reduces portability because the

application must identify a specific JDBC driver class name and driver URL. The

driver class name and driver URL are specific to a JDBC vendor, driver

12 Application Programming Guide and Reference for Java™

implementation, and data source. If your applications need to be portable among

data sources, you should use the DataSource interface.

When you connect to a data source using the DataSource interface, you use a

DataSource object. It is possible to create and use the DataSource object in the same

application, as you do with the DriverManager interface. Figure 4 shows an

example for the DB2 Universal JDBC Driver:

import java.sql.*; // JDBC base

import javax.sql.*; // JDBC 2.0 standard extension APIs

import com.ibm.db2.jcc.*; // DB2® Universal JDBC Driver �1�

 // interfaces

DB2SimpleDataSource db2ds=new DB2SimpleDataSource(); �2�

db2ds.setDatabaseName("db2loc1"); �3�

 // Assign the location name

db2ds.setDescription("Our Sample Database");

 // Description for documentation

db2ds.setUser("john");

 // Assign the user ID

db2ds.setPassword("db2");

 // Assign the password

Connection con=db2ds.getConnection(); �4�

 // Create a Connection object

 �1� Import the package that contains the implementation of the DataSource interface.

�2� Creates a DB2SimpleDataSource object. DB2SimpleDataSource is one of the DB2

implementations of the DataSource interface. See “Creating and deploying

DataSource objects” on page 49 for information on DB2’s DataSource

implementations.

�3� The setDatabaseName, setDescription, setUser, and setPassword methods assign

attributes to the DB2SimpleDataSource object. See “DataSource properties for the

JDBC/SQLJ 2.0 Driver for OS/390 and z/OS” on page 196 for information about

the attributes that you can set for a DB2SimpleDataSource object under the

JDBC/SQLJ 2.0 Driver for OS/390 and z/OS. See “Properties for the DB2

Universal JDBC Driver” on page 185 for information about the attributes that you

can set for a DB2SimpleDataSource object under the DB2 Universal JDBC Driver.

�4� Establishes a connection to the data source that DB2SimpleDataSource object db2ds

represents.

However, a more flexible way to use a DataSource object is for your system

administrator to create and manage it separately, using WebSphere® or some other

tool. The program that creates and manages a DataSource object also uses the

Java™ Naming and Directory Interface (JNDI) to assign a logical name to the

DataSource object. The JDBC application that uses the DataSource object can then

refer to the object by its logical name, and does not need any information about

the underlying data source. In addition, your system administrator can modify the

data source attributes, and you do not need to change your application program.

To learn more about using WebSphere to deploy DataSource objects, go to this

URL on the Web:

http://www.ibm.com/software/webservers/appserv/

To learn about deploying DataSource objects yourself, see “Creating and deploying

DataSource objects” on page 49.

You can use the DataSource interface and the DriverManager interface in the same

application, but for maximum portability, it is recommended that you use only the

DataSource interface to obtain connections.

Figure 4. Creating and using a DataSource object in the same application

Chapter 2. JDBC application programming 13

The remainder of this topic explains how to create a connection using a DataSource

object, given that the system administrator has already created the object and

assigned a logical name to it.

To obtain a connection using a DataSource object, you need to follow these steps:

1. From your system administrator, obtain the logical name of the data source to

which you need to connect.

2. Create a Context object to use in the next step. The Context interface is part of

the Java Naming and Directory Interface (JNDI), not JDBC.

3. In your application program, use JNDI to get the DataSource object that is

associated with the logical data source name.

4. Use the DataSource.getConnection method to obtain the connection.

You can use one of the following forms of the getConnection method:

getConnection();

getConnection(String user, String password);

Use the second form if you need to specify a user ID and password for the

connection that are different from the ones that were specified when the

DataSource was deployed.

Figure 5 shows an example of the code that you need in your application program

to obtain a connection using a DataSource object, given that the logical name of the

data source that you need to connect to is jdbc/sampledb. The numbers to the right

of selected statements correspond to the previously-described steps.

import java.sql.*;

import javax.naming.*;

import javax.sql.*;

...

Context ctx=new InitialContext(); �2�

DataSource ds=(DataSource)ctx.lookup("jdbc/sampledb"); �3�

Connection con=ds.getConnection(); �4�

How to determine which type of DB2 Universal JDBC Driver

connectivity to use

The DB2 Universal JDBC Driver supports two types of connectivity: type 2

connectivity and type 4 connectivity. For the DriverManager interface, you specify

the type of connectivity through the URL in the DriverManager.getConnection

method. For the DataSource interface, you specify the type of connectivity through

the driverType property.

The following table summarizes the differences between type 2 connectivity and

type 4 connectivity:

 Table 1. Comparison of Universal Driver type 2 connectivity and Universal Driver type 4 connectivity

Function

Universal Driver type 2 connectivity

support

Universal Driver type 4 connectivity

support

Performance Better for accessing a local DB2 server Better for accessing a remote DB2

server

Installation Requires installation of native

libraries in addition to Java classes

Requires installation of Java classes

only

Figure 5. Obtaining a connection using a DataSource object

14 Application Programming Guide and Reference for Java™

##

#
#
#
#
#

###
#

##
#
#
#

Table 1. Comparison of Universal Driver type 2 connectivity and Universal Driver type 4 connectivity (continued)

Function

Universal Driver type 2 connectivity

support

Universal Driver type 4 connectivity

support

Stored procedures Can be used to call or execute stored

procedures

Can be used only to call stored

procedures

Distributed transaction processing

(XA)

Supported Supported

J2EE 1.4 compliance Compliant Compliant

CICS environment Supported Not supported

IMS environment Supported Not supported

The following points can help you determine which type of connectivity to use.

Use Universal Driver type 2 connectivity under these circumstances:

v Your JDBC or SQLJ application runs locally most of the time.

Local applications have better performance with type 2 connectivity.

v You are running a Java stored procedure.

A stored procedure environment consists of two parts: a client program, from

which you call a stored procedure, and a server program, which is the stored

procedure. You can call a stored procedure in a JDBC or SQLJ program that uses

type 2 or type 4 connectivity, but you must run a Java stored procedure using

type 2 connectivity.

v Your application runs in the CICS environment or IMS environment.

Use Universal Driver type 4 connectivity under these circumstances:

v Your JDBC or SQLJ application runs remotely most of the time.

Remote applications have better performance with type 4 connectivity.

v You do not have DB2 installed locally.

Universal Driver type 2 connectivity relies on code that is part of DB2, but

Universal Driver type 4 connectivity does not. Therefore, for Universal Driver

type 4 connectivity, you do not need to have DB2 installed where the driver

runs.

v You are using DB2 Universal JDBC Driver connection concentrator and Sysplex

workload balancing support.

Setting the isolation level for a JDBC transaction

To set the isolation level for a unit of work within a JDBC program, use the

Connection.setTransactionIsolation(int level) method. Table 2 shows the

values of level that you can specify in the Connection.setTransactionIsolation

method and their DB2® equivalents.

 Table 2. Equivalent JDBC and DB2 isolation levels

JDBC value DB2 isolation level

TRANSACTION_SERIALIZABLE Repeatable read

TRANSACTION_REPEATABLE_READ Read stability

TRANSACTION_READ_COMMITTED Cursor stability

TRANSACTION_READ_UNCOMMITTED Uncommitted read

Chapter 2. JDBC application programming 15

#

#
#
#
#
#

##
#
#
#

#
#
##

###

###

###
#

#

|

|
|
|
|

||

||

||

||

||

||
|

With the JDBC/SQLJ Driver for OS/390 and z/OS, you can change the isolation

level only at the beginning of a transaction.

JDBC connection objects

When you connect to a data source by either connection method, you create a

Connection object, which represents the connection to the data source. You use this

Connection object to do the following things:

v Create Statement, PreparedStatement, and CallableStatement objects for

executing SQL statements. These are discussed in “JDBC interfaces for executing

SQL” on page 17.

v Gather information about the data source to which you are connected. This

process is discussed in “Learning about a data source using DatabaseMetaData

methods” on page 39.

v Commit or roll back transactions. You can commit transactions manually or

automatically. These operations are discussed in “Committing or rolling back

JDBC transactions.”

v Close the connection to the data source. This operation is discussed in “Closing

a connection to a JDBC data source.”

Committing or rolling back JDBC transactions

 In JDBC, to commit or roll back transactions explicitly, use the commit or rollback

methods. For example:

 Connection con;

 ...

con.commit();

If autocommit mode is on, DB2® performs a commit operation after every SQL

statement completes. To determine whether autocommit mode is on, invoke the

Connection.getAutoCommit method. To set autocommit mode on, invoke the

Connection.setAutoCommit(true) method. To set autocommit mode off, invoke the

Connection.setAutoCommit(false) method.

Connections that participate in global transactions cannot invoke the

setAutoCommit(true) method. See Chapter 12, “JDBC and SQLJ global transaction

support,” on page 307 for information on global transactions.

Closing a connection to a JDBC data source

When you have finished with a connection to a data source, it is essential that you

close the connection to the data source. Doing this releases the Connection object’s

DB2® and JDBC resources immediately. To close the connection to the data source,

use the close method. For example:

 Connection con;

 ...

con.close();

If autocommit mode is not on, the connection needs to be on a unit-of-work

boundary before you close the connection.

16 Application Programming Guide and Reference for Java™

|
|

JDBC interfaces for executing SQL

You execute SQL statements in a traditional SQL program to insert, update, and

delete data in tables, retrieve data from the tables, or call stored procedures. To

perform the same functions in a JDBC program, you invoke methods that are

defined in the following interfaces:

v The Statement interface supports all SQL statement execution. The following

interfaces inherit methods from the Statement interface:

– The PreparedStatement interface supports any SQL statement containing

input parameter markers. Parameter markers represent input variables. The

PreparedStatement interface can also be used for SQL statements with no

parameter markers.

With the DB2 Universal JDBC Driver, the PreparedStatement interface can be

used to call stored procedures that have input parameters and no output

parameters, and that return no result sets.

– The CallableStatement interface supports the invocation of a stored

procedure.

The CallableStatement interface can be used to call stored procedures with

input parameters, output parameters, or input and output parameters, or no

parameters. With the DB2 Universal JDBC Driver, you can also use the

Statement interface to call stored procedures, but those stored procedures

must have no parameters. For the JDBC/SQLJ Driver for OS/390, you must

use the CallableStatement interface, even if the stored procedure has no

parameters.
v The ResultSet interface provides access to the results that a query generates.

The ResultSet interface has the same purpose as the cursor that is used in SQL

applications in other languages.

For a complete list of DB2® support for JDBC interfaces, see “Comparison of driver

support for JDBC APIs” on page 107.

Creating and modifying DB2 objects using the

Statement.executeUpdate method

You can use the Statement.executeUpdate method to do the following things:

v Execute data definition statements, such as CREATE, ALTER, DROP, GRANT,

REVOKE

v Execute INSERT, UPDATE and DELETE statements that do not contain

parameter markers

v With the DB2 Universal JDBC Driver, execute the CALL statement to call stored

procedures that have no parameters and that return no result sets.

To execute these SQL statements, you need to perform these steps:

1. Invoke the Connection.createStatement method to create a Statement object.

2. Invoke the Statement.executeUpdate method to perform the SQL operation.

3. Invoke the Statement.close method to close the Statement object.

For example, suppose that you want to execute this SQL statement:

UPDATE EMPLOYEE SET PHONENO=’4657’ WHERE EMPNO=’000010’

The following code creates Statement object stmt, executes the UPDATE statement,

and returns the number of rows that were updated in numUpd. The numbers to the

right of selected statements correspond to the previously-described steps.

Chapter 2. JDBC application programming 17

|
|

Retrieving data from DB2 tables using the

Statement.executeQuery method

To retrieve data from a table using a SELECT statement with no parameter

markers, you can use the Statement.executeQuery method. This method returns a

result table in a ResultSet object. After you obtain the result table, you need to use

ResultSet methods to move through the result table and obtain the individual

column values from each row.

With the DB2 Universal JDBC Driver, you can also use the Statement.executeQuery

method to retrieve a result set from a stored procedure call, if that stored

procedure returns only one result set. If the stored procedure returns multiple

result sets, you need to use the Statement.execute method. See “Retrieving

multiple result sets from a stored procedure in a JDBC application” on page 36 for

more information.

This topic discusses the simplest kind of ResultSet, which is a read-only ResultSet

in which you can only move forward, one row at a time. The DB2 Universal JDBC

Driver also supports updatable and scrollable ResultSets. These are discussed in

“Specifying updatability, scrollability, and holdability for ResultSets in JDBC

applications” on page 46.

To retrieve rows from a table using a SELECT statement with no parameter

markers, you need to perform these steps:

1. Invoke the Connection.createStatement method to create a Statement object.

2. Invoke the Statement.executeQuery method to obtain the result table from the

SELECT statement in a ResultSet object.

3. In a loop, position the cursor using the next method, and retrieve data from

each column of the current row of the ResultSet object using getXXX methods.

XXX represents a data type. See “Comparison of driver support for JDBC APIs”

on page 107 for a list of supported getXXX and setXXX methods.

4. Invoke the ResultSet.close method to close the ResultSet object.

5. Invoke the Statement.close method to close the Statement object when you

have finished using that object.

For example, the following code demonstrates how to retrieve all rows from the

employee table. The numbers to the right of selected statements correspond to the

previously-described steps.

Connection con;

Statement stmt;

int numUpd;

...

stmt = con.createStatement(); // Create a Statement object �1�

numUpd = stmt.executeUpdate(

 "UPDATE EMPLOYEE SET PHONENO=’4657’ WHERE EMPNO=’000010’"); �2�

 // Perform the update

stmt.close(); // Close Statement object �3�

Figure 6. Using Statement.executeUpdate

18 Application Programming Guide and Reference for Java™

|
|
|
|
|
|

Updating data in DB2 tables using the

PreparedStatement.executeUpdate method

The Statement.executeUpdate method works if you update DB2® tables with

constant values. However, updates often need to involve passing values in

variables to DB2 tables. To do that, you use the PreparedStatement.executeUpdate

method.

With the DB2 Universal JDBC Driver, you can also use

PreparedStatement.executeUpdate to call stored procedures that have input

parameters and no output parameters, and that return no result sets.

When you execute an SQL statement many times, you can get better performance

by creating the SQL statement as a PreparedStatement.

For example, the following UPDATE statement lets you update the employee table

for only one phone number and one employee number:

UPDATE EMPLOYEE SET PHONENO=’4657’ WHERE EMPNO=’000010’

Suppose that you want to generalize the operation to update the employee table

for any set of phone numbers and employee numbers. You need to replace the

constant phone number and employee number with variables:

UPDATE EMPLOYEE SET PHONENO=? WHERE EMPNO=?

Variables of this form are called parameter markers. To execute an SQL statement

with parameter markers, you need to perform these steps:

1. Invoke the Connection.prepareStatement method to create a PreparedStatement

object.

2. Invoke the PreparedStatement.setXXX methods to pass values to the variables.

3. Invoke the PreparedStatement.executeUpdate method to update the table with

the variable values.

4. Invoke the PreparedStatement.close method to close the PreparedStatement

object when you have finished using that object.

The following code performs the previous steps to update the phone number to

’4657’ for the employee with employee number ’000010’. The numbers to the right

of selected statements correspond to the previously-described steps.

String empNo;

Connection con;

Statement stmt;

ResultSet rs;

...

stmt = con.createStatement(); // Create a Statement object �1�

rs = stmt.executeQuery("SELECT EMPNO FROM EMPLOYEE"); �2�

 // Get the result table from the query

while (rs.next()) { // Position the cursor �3�

 empNo = rs.getString(1); // Retrieve only the first column value

 System.out.println("Employee number = " + empNo);

 // Print the column value

}

rs.close(); // Close the ResultSet �4�

stmt.close(); // Close the Statement �5�

Figure 7. Using Statement.executeQuery

Chapter 2. JDBC application programming 19

You can also use the PreparedStatement.executeUpdate method for statements that

have no parameter markers. The steps for executing a PreparedStatement object

with no parameter markers are similar to executing a PreparedStatement object

with parameter markers, except you skip step 2. The following example

demonstrates these steps.

Retrieving data from DB2 using the

PreparedStatement.executeQuery method

To retrieve data from a table using a SELECT statement with parameter markers,

you use the PreparedStatement.executeQuery method. This method returns a result

table in a ResultSet object. After you obtain the result table, you need to use

ResultSet methods to move through the result table and obtain the individual

column values from each row.

With the DB2 Universal JDBC Driver, you can also use the

PreparedStatement.executeQuery method to retrieve a result set from a stored

procedure call, if that stored procedure returns only one result set and has only

input parameters. If the stored procedure returns multiple result sets, you need to

use the Statement.execute method. See “Retrieving multiple result sets from a

stored procedure in a JDBC application” on page 36 for more information.

To retrieve rows from a table using a SELECT statement with parameter markers,

you need to perform these steps:

1. Invoke the Connection.prepareStatement method to create a PreparedStatement

object.

2. Invoke PreparedStatement.setXXX methods to pass values to the input

parameters.

3. Invoke the PreparedStatement.executeQuery method to obtain the result table

from the SELECT statement in a ResultSet object.

Connection con;

PreparedStatement pstmt;

int numUpd;

...

pstmt = con.prepareStatement(

 "UPDATE EMPLOYEE SET PHONENO=? WHERE EMPNO=?");

 // Create a PreparedStatement object �1�

pstmt.setString(1,"4657"); // Assign value to first parameter �2�

pstmt.setString(2,"000010"); // Assign value to second parameter

numUpd = pstmt.executeUpdate(); // Perform the update �3�

pstmt.close(); // Close the PreparedStatement object �4�

Figure 8. Using PreparedStatement.executeUpdate for an SQL statement with parameter

markers

Connection con;

PreparedStatement pstmt;

int numUpd;

...

pstmt = con.prepareStatement(

 "UPDATE EMPLOYEE SET PHONENO=’4657’ WHERE EMPNO=’000010’");

 // Create a PreparedStatement object �1�

numUpd = pstmt.executeUpdate(); // Perform the update �3�

pstmt.close(); // Close the PreparedStatement object �4�

Figure 9. Using PreparedStatement.executeUpdate for an SQL statement without parameter

markers

20 Application Programming Guide and Reference for Java™

|
|
|
|
|
|

4. In a loop, position the cursor using the ResultSet.next method, and retrieve

data from each column of the current row of the ResultSet object using getXXX

methods.

5. Invoke the ResultSet.close method to close the ResultSet object.

6. Invoke the PreparedStatement.close method to close the PreparedStatement

object when you have finished using that object.

For example, the following code demonstrates how to retrieve rows from the

employee table for a specific employee. The numbers to the right of selected

statements correspond to the previously-described steps.

You can also use the PreparedStatement.executeQuery method for statements that

have no parameter markers. When you execute a query many times, you can get

better performance by creating the SQL statement as a PreparedStatement.

Calling stored procedures using CallableStatement methods

To call stored procedures, you invoke methods in the CallableStatement class. The

basic steps are:

1. Invoke the Connection.prepareCall method to create a CallableStatement

object.

The CALL statement cannot contain literal arguments unless the DB2 server on

which the statement runs supports dynamic execution of the CALL statement.

2. Invoke the CallableStatement.setXXX methods to pass values to the input (IN)

parameters.

3. Invoke the CallableStatement.registerOutParameter method to indicate which

parameters are output-only (OUT) parameters, or input and output (INOUT)

parameters.

4. Invoke one of the following methods to call the stored procedure:

CallableStatement.executeUpdate

Invoke this method if the stored procedure does not return result sets.

CallableStatement.executeQuery

Invoke this method if the stored procedure returns one result set.

String empnum, phonenum;

Connection con;

PreparedStatement pstmt;

ResultSet rs;

...

pstmt = con.prepareStatement(

 "SELECT EMPNO, PHONENO FROM EMPLOYEE WHERE EMPNO=?");

 // Create a PreparedStatement object �1�

pstmt.setString(1,"000010"); // Assign value to input parameter �2�

rs = pstmt.executeQuery(); // Get the result table from the query �3�

while (rs.next()) { // Position the cursor �4�

 empnum = rs.getString(1); // Retrieve the first column value

 phonenum = rs.getString(2); // Retrieve the first column value

 System.out.println("Employee number = " + empnum +

 "Phone number = " + phonenum);

 // Print the column values

}

rs.close(); // Close the ResultSet �5�

pstmt.close(); // Close the PreparedStatement �6�

Figure 10. Using PreparedStatement.executeQuery

Chapter 2. JDBC application programming 21

CallableStatement.execute

Invoke this method if the stored procedure returns multiple result sets.
5. If the stored procedure returns result sets, retrieve the result sets. See

“Retrieving multiple result sets from a stored procedure in a JDBC application”

on page 36.

6. Invoke the CallableStatement.getXXX methods to retrieve values from the OUT

parameters or INOUT parameters.

7. Invoke the CallableStatement.close method to close the CallableStatement

object when you have finished using that object.

The following code illustrates calling a stored procedure that has one input

parameter, four output parameters, and no returned ResultSets. The numbers to

the right of selected statements correspond to the previously-described steps.

Handling an SQLException under the DB2 Universal JDBC

Driver

As in all Java™ programs, error handling is done using try/catch blocks. Methods

throw exceptions when an error occurs, and the code in the catch block handles

those exceptions.

JDBC provides the SQLException class for handling errors. All JDBC methods

throw an instance of SQLException when an error occurs during their execution.

According to the JDBC specification, an SQLException object contains the following

information:

v A String object that contains a description of the error, or null

v A String object that contains the SQLSTATE, or null

v An int value that contains an error code

v A pointer to the next SQLException, or null

The DB2 Universal JDBC Driver provides a com.ibm.db2.jcc.DB2Diagnosable

interface that extends the SQLException class. The DB2Diagnosable interface gives

you more information about errors that occur when DB2® is accessed. If the JDBC

int ifcaret;

int ifcareas;

int xsbytes;

String errbuff;

Connection con;

CallableStatement cstmt;

ResultSet rs;

...

cstmt = con.prepareCall("CALL DSN8.DSN8ED2(?,?,?,?,?)"); �1�

 // Create a CallableStatement object

cstmt.setString (1, "DISPLAY THREAD(*)"); �2�

 // Set input parameter (DB2 command)

cstmt.registerOutParameter (2, Types.INTEGER); �3�

 // Register output parameters

cstmt.registerOutParameter (3, Types.INTEGER);

cstmt.registerOutParameter (4, Types.INTEGER);

cstmt.registerOutParameter (5, Types.VARCHAR);

cstmt.executeUpdate(); // Call the stored procedure �4�

ifcaret = cstmt.getInt(2); // Get the output parameter values �6�

ifcareas = cstmt.getInt(3);

xsbytes = cstmt.getInt(4);

errbuff = cstmt.getString(5);

cstmt.close(); �7�

Figure 11. Using CallableStatement methods for a stored procedure call with parameter

markers

22 Application Programming Guide and Reference for Java™

driver detects an error, DB2Diagnosable gives you the same information as the

standard SQLException class. However, if DB2 detects the error, DB2Diagnosable

adds the following methods, which give you additional information about the

error:

getSqlca

Returns an DB2Sqlca object with the following information:

v An SQL error code

v The SQLERRMC values

v The SQLERRP value

v The SQLERRD values

v The SQLWARN values

v The SQLSTATE

getThrowable

Returns a java.lang.Throwable object that caused the SQLException, or null, if

no such object exists.

printTrace

Prints diagnostic information.

The basic steps for handling an SQLException in a JDBC program that runs under

the DB2 Universal JDBC Driver are:

1. Give the program access to the com.ibm.db2.jcc.DB2Diagnosable interface and

the com.ibm.db2.jcc.DB2Sqlca class. You can fully qualify all references to

them, or you can import them:

import com.ibm.db2.jcc.DB2Diagnosable;

import com.ibm.db2.jcc.DB2Sqlca;

2. Put code that can generate an SQLException in a try block.

3. In the catch block, perform the following steps in a loop:

a. Test whether you have retrieved the last SQLException. If not, continue to

the next step.

b. Check whether any DB2-only information exists by testing for the existence

of a DB2Diagnosable object. If the object exists:

 1) Optional: Invoke the DB2Diagnosable.printTrace method to write all

SQLException information to a java.io.PrintWriter object.

 2) Invoke the DB2Diagnosable.getThrowable method to determine

whether an underlying java.lang.Throwable caused the SQLException.

 3) Invoke the DB2Diagnosable.getSqlca method to retrieve the DB2Sqlca

object.

 4) Invoke the DB2Sqlca.getSqlCode method to retrieve an SQL error code

value.

 5) Invoke the DB2Sqlca.getSqlErrmc method to retrieve a string that

contains all SQLERRMC values, or invoke the

DB2Sqlca.getSqlErrmcTokens method to retrieve the SQLERRMC

values in an array.

 6) Invoke the DB2Sqlca.getSqlErrp method to retrieve the SQLERRP

value.

 7) Invoke the DB2Sqlca.getSqlErrd method to retrieve the SQLERRD

values in an array.

 8) Invoke the DB2Sqlca.getSqlWarn method to retrieve the SQLWARN

values in an array.

 9) Invoke the DB2Sqlca.getSqlState method to retrieve the SQLSTATE

value.

Chapter 2. JDBC application programming 23

10) Invoke the DB2Sqlca.getMessage method to retrieve error message text

from the database server.
c. Invoke the SQLException.getNextException method to retrieve the next

SQLException.

The following code demonstrates how to obtain information from the DB2 version

of an SQLException that is provided with the DB2 Universal JDBC Driver. The

numbers to the right of selected statements correspond to the previously-described

steps.

24 Application Programming Guide and Reference for Java™

import java.sql.*; // Import JDBC API package

import com.ibm.db2.jcc.DB2Diagnosable; // Import packages for DB2 �1�

import com.ibm.db2.jcc.DB2Sqlca; // SQLException support

java.io.PrintWriter printWriter; // For dumping all SQLException

 // information

...

try { �2�

 // Code that could generate SQLExceptions

 ...

} catch(SQLException sqle) {

 while(sqle != null) { // Check whether there are more �3a�

 // SQLExceptions to process

 //=====> Optional DB2-only error processing

 if (sqle instanceof DB2Diagnosable) { �3b�

 // Check if DB2-only information exists

 com.ibm.db2.jcc.DB2Diagnosable diagnosable =

 (com.ibm.db2.jcc.DB2Diagnosable)sqle;

 diagnosable.printTrace (printWriter, ""); �3b1�

 java.lang.Throwable throwable =

 diagnosable.getThrowable(); �3b2�

 if (throwable != null) {

 // Extract java.lang.Throwable information

 // such as message or stack trace.

 ...

 }

 DB2Sqlca sqlca = diagnosable.getSqlca(); �3b3�

 // Get DB2Sqlca object

 if (sqlca != null) { // Check that DB2Sqlca is not null

 int sqlCode = sqlca.getSqlCode(); // Get the SQL error code �3b4�

 String sqlErrmc = sqlca.getSqlErrmc(); �3b5�

 // Get the entire SQLERRMC

 String[] sqlErrmcTokens = sqlca.getSqlErrmcTokens();

 // You can also retrieve the

 // individual SQLERRMC tokens

 String sqlErrp = sqlca.getSqlErrp(); �3b6�

 // Get the SQLERRP

 int[] sqlErrd = sqlca.getSqlErrd(); �3b7�

 // Get SQLERRD fields

 char[] sqlWarn = sqlca.getSqlWarn(); �3b8�

 // Get SQLWARN fields

 String sqlState = sqlca.getSqlState(); �3b9�

 // Get SQLSTATE

 String errMessage = sqlca.getMessage(); �3b10�

 // Get error message

 System.err.println ("Server error message: " + errMessage);

 System.err.println ("--------------- SQLCA ---------------");

 System.err.println ("Error code: " + sqlCode);

 System.err.println ("SQLERRMC: " + sqlErrmc);

 for (int i=0; i< sqlErrmcTokens.length; i++) {

 System.err.println (" token " + i + ": " + sqlErrmcTokens[i]);

 }

Figure 12. Processing an SQLException under the DB2 Universal JDBC Driver (Part 1 of 2)

Chapter 2. JDBC application programming 25

Handling an SQLWarning under the DB2 Universal JDBC

Driver

Unlike SQL errors, SQL warnings do not cause JDBC methods to throw exceptions.

Instead, the Connection, Statement, PreparedStatement, CallableStatement, and

ResultSet classes contain getWarnings methods, which you need to invoke after

you execute SQL statements to determine whether any SQL warnings were

generated. Calling getWarnings retrieves an SQLWarning object.

 Important:

 When a call to Statement.executeUpdate or PreparedStatement.executeUpdate

affects no rows, the DB2 Universal JDBC Driver generates an SQLWarning with error

code +100.

When a call to ResultSet.next returns no rows, the DB2 Universal JDBC Driver

does not generate an SQLWarning.

 A generic SQLWarning object contains the following information:

v A String object that contains a description of the warning, or null

v A String object that contains the SQLSTATE, or null

v An int value that contains an error code

v A pointer to the next SQLWarning, or null

Under the DB2 Universal JDBC Driver, like an SQLException object, an SQLWarning

object can also contain DB2®-specific information. The DB2-specific information for

an SQLWarning object is the same as the DB2-specific information for an

SQLException object.

The basic steps for retrieving SQL warning information are:

 System.err.println ("SQLERRP: " + sqlErrp);

 System.err.println (

 "SQLERRD(1): " + sqlErrd[0] + "\n" +

 "SQLERRD(2): " + sqlErrd[1] + "\n" +

 "SQLERRD(3): " + sqlErrd[2] + "\n" +

 "SQLERRD(4): " + sqlErrd[3] + "\n" +

 "SQLERRD(5): " + sqlErrd[4] + "\n" +

 "SQLERRD(6): " + sqlErrd[5]);

 System.err.println (

 "SQLWARN1: " + sqlWarn[0] + "\n" +

 "SQLWARN2: " + sqlWarn[1] + "\n" +

 "SQLWARN3: " + sqlWarn[2] + "\n" +

 "SQLWARN4: " + sqlWarn[3] + "\n" +

 "SQLWARN5: " + sqlWarn[4] + "\n" +

 "SQLWARN6: " + sqlWarn[5] + "\n" +

 "SQLWARN7: " + sqlWarn[6] + "\n" +

 "SQLWARN8: " + sqlWarn[7] + "\n" +

 "SQLWARN9: " + sqlWarn[8] + "\n" +

 "SQLWARNA: " + sqlWarn[9]);

 System.err.println ("SQLSTATE: " + sqlState);

 // portion of SQLException

 }

 sqle=sqle.getNextException(); // Retrieve next SQLException �3c�

 }

}

Figure 12. Processing an SQLException under the DB2 Universal JDBC Driver (Part 2 of 2)

26 Application Programming Guide and Reference for Java™

#

#

#
#
#

#
#

1. Immediately after invoking a method that executes an SQL statement, invoke

the getWarnings method to retrieve an SQLWarning object.

2. Perform the following steps in a loop:

a. Test whether the SQLWarning object is null. If not, continue to the next step.

b. Invoke the SQLWarning.getMessage method to retrieve the warning

description.

c. Invoke the SQLWarning.getSQLState method to retrieve the SQLSTATE

value.

d. Invoke the SQLWarning.getErrorCode method to retrieve the error code

value.

e. If you want DB2-specific warning information, perform the same steps that

you perform to get DB2-specific information for an SQLException.

f. Invoke the SQLWarning.getNextWarning method to retrieve the next

SQLWarning.

The following code illustrates how to obtain generic SQLWarning information. The

numbers to the right of selected statements correspond to the previously-described

steps.

 For an example of obtaining DB2-specific error information, see “Handling an

SQLException under the JDBC/SQLJ Driver for OS/390 and z/OS” on page 55.

Advanced JDBC application programming concepts

The following topics contain more advanced information about writing JDBC

applications that applies to all DB2 UDB for z/OS drivers:

v “LOBs in JDBC applications with the DB2 Universal JDBC Driver” on page 28

v “Java data types for retrieving or updating LOB column data in JDBC

applications” on page 29

v “ROWIDs in JDBC with the DB2 Universal JDBC Driver” on page 31

v “Distinct types in JDBC applications” on page 32

v “Savepoints in JDBC applications” on page 33

v “Retrieving identity column values in JDBC applications” on page 34

v “Retrieving multiple result sets from a stored procedure in a JDBC application”

on page 36

v “Learning about a ResultSet using ResultSetMetaData methods” on page 38

v “Learning about a data source using DatabaseMetaData methods” on page 39

Connection con;

Statement stmt;

ResultSet rs;

SQLWarning sqlwarn;

...

stmt = con.createStatement(); // Create a Statement object

rs = stmt.executeQuery("SELECT * FROM EMPLOYEE");

 // Get the result table from the query

sqlwarn = stmt.getWarnings(); // Get any warnings generated �1�

while (sqlwarn != null) { // While there are warnings, get and �2a�

 // print warning information

 System.out.println ("Warning description: " + sqlwarn.getMessage()); �2b�

 System.out.println ("SQLSTATE: " + sqlwarn.getSQLState()); �2c�

 System.out.println ("Error code: " + sqlwarn.getErrorCode()); �2d�

 sqlwarn=sqlwarn.getNextWarning(); // Get next SQLWarning �2f�

}

Figure 13. Processing an SQLWarning

Chapter 2. JDBC application programming 27

v “Learning about parameters in a PreparedStatement using ParameterMetaData

methods” on page 40

v “Making batch updates in JDBC applications” on page 41

v “Making batch queries in JDBC applications” on page 43

v “Retrieving information from a BatchUpdateException” on page 44

v “Characteristics of a JDBC ResultSet under the DB2 Universal JDBC Driver” on

page 45

v “Specifying updatability, scrollability, and holdability for ResultSets in JDBC

applications” on page 46

v “Creating and deploying DataSource objects” on page 49

v “Providing extended client information to the DB2 server with the DB2

Universal JDBC Driver” on page 50

v “System monitoring for the DB2 Universal JDBC Driver” on page 51

LOBs in JDBC applications with the DB2 Universal JDBC

Driver

The DB2 Universal JDBC Driver includes all of the LOB support in the JDBC 2.0

specification, and some of the LOB support in the JDBC 3.0 specification. This

driver also includes support for LOBs in additional methods and for additional

data types.

CLOB data is always sent to the database server as a Unicode stream. The database

server converts the data to the target code page.

LOB locator support: The DB2 Universal JDBC Driver can use LOB locators to

retrieve data in LOB columns. To cause JDBC to use LOB locators to retrieve data

from LOB columns, you need to set the fullyMaterializeLobData property to

false. Properties are discussed in “Properties for the DB2 Universal JDBC Driver”

on page 185.

fullyMaterializeLobData has no effect on stored procedure parameters or LOBs

that are fetched using scrollable cursors. When you fetch data from a DB2 UDB

server in the OS/390® or z/OS® environment using scrollable cursors, JDBC

always uses LOB locators to retrieve data from LOB columns.

As in any other language, a LOB locator in a Java application is associated with

only one DB2 subsystem. You cannot use a single LOB locator to move data

between two different DB2 subsystems. To move LOB data between two DB2

subsystems, you need to materialize the LOB data when you retrieve it from a

table in the first DB2 subsystem and then insert that data into the table in the

second DB2 subsystem.

JDBC 3.0 methods supported by the DB2 Universal JDBC Driver: In addition to the

methods in the JDBC 2.0 specification, the DB2 Universal JDBC Driver includes

LOB support in the following JDBC 3.0 methods:

v You can update a BLOB column with the following Blob methods. The BLOB

value must be fully materialized, which means that the

fullyMaterializeLobData property value must be true.

– setBinaryStream

– setBytes

– truncate

v You can update a CLOB column with the following Clob methods. The CLOB

value must be fully materialized, which means that the

fullyMaterializeLobData property value must be true.

– setAsciiStream

28 Application Programming Guide and Reference for Java™

#

#
#
#

#
#
#
#
#
#

#
#
#
#

– setCharacterStream

– setString

– truncate

Additional methods supported by the DB2 Universal JDBC Driver: In addition to

the methods in the JDBC specification, the DB2 Universal JDBC Driver includes

LOB support in the following methods:

v You can specify a BLOB column as an argument of the following ResultSet

methods to retrieve data from a BLOB column:

– getBinaryStream

– getBytes

v You can specify a CLOB column as an argument of the following ResultSet

methods to retrieve data from a CLOB column:

– getAsciiStream

– getCharacterStream

– getString

– getUnicodeStream

v You can use the following PreparedStatement methods to set the values for

parameters that correspond to BLOB columns:

– setBytes

– setBinaryStream

v You can use the following PreparedStatement methods to set the values for

parameters that correspond to CLOB columns:

– setString

– setAsciiStream

– setUnicodeStream

– setCharacterStream

v You can retrieve the value of a JDBC CLOB parameter using the following

CallableStatement method:

– getString

Restriction on using LOBs with the DB2 Universal JDBC Driver: If you are using

Universal Driver type 2 connectivity, you cannot call a stored procedure that has

DBCLOB OUT or INOUT parameters.

Java data types for retrieving or updating LOB column data in

JDBC applications

For Universal Driver type 2 connectivity to DB2® UDB for z/OS®, when the JDBC

driver processes a CallableStatement.setXXX call for a stored procedure input

parameter, or a CallableStatement.registerOutParameter call for a stored

procedure output parameter, the driver cannot determine the parameter data types.

When the deferPrepares property is set to true, and the DB2 Universal JDBC

Driver processes a PreparedStatement.setXXX call, the driver might need to do

extra processing to determine data types. This extra processing can impact

performance.

When the JDBC driver cannot immediately determine the data type of a parameter

that is used with a LOB column, you need to choose a parameter data type that is

compatible with the LOB data type.

 Input parameters for BLOB columns:

Chapter 2. JDBC application programming 29

#
#
#

|
|

|
|
|
|

|
|
|

|

|

|
|
|
|

|
|
|
|

|
|
|

|

For input parameters for BLOB columns, or input/output parameters that are used

for input to BLOB columns, you can use one of the following techniques:

v Use a java.sql.Blob input variable, which is an exact match for a BLOB column:

cstmt.setBlob(parmIndex, blobData);

v Use a CallableStatement.setObject call that specifies that the target data type is

BLOB:

byte[] byteData = {(byte)0x1a, (byte)0x2b, (byte)0x3c};

cstmt.setObject(parmInd, byteData, java.sql.Types.BLOB);

v Use an input parameter of type of java.io.ByteArrayInputStream with a

CallableStatement.setBinaryStream call. A java.io.ByteArrayInputStream

object is compatible with a BLOB data type. For this call, you need to specify the

exact length of the input data:

java.io.ByteArrayInputStream byteStream =

 new java.io.ByteArrayInputStream(byteData);

int numBytes = byteData.length;

cstmt.setBinaryStream(parmIndex, byteStream, numBytes);

 Output parameters for BLOB columns:

 For output parameters for BLOB columns, or input/output parameters that are

used for output from BLOB columns, you can use the following technique:

v Use the CallableStatement.registerOutParameter call to specify that an output

parameter is of type BLOB. Then you can retrieve the parameter value into any

variable that has a data type that is compatible with a BLOB data type. For

example, the following code lets you retrieve a BLOB value into a byte[]

variable:

cstmt.registerOutParameter(parmIndex, java.sql.Types.BLOB);

cstmt.execute();

byte[] byteData = cstmt.getBytes(parmIndex);

 Input parameters for CLOB columns:

 For input parameters for CLOB columns, or input/output parameters that are used

for input to CLOB columns, you can use one of the following techniques:

v Use a java.sql.Clob input variable, which is an exact match for a CLOB column:

cstmt.setClob(parmIndex, clobData);

v Use a CallableStatement.setObject call that specifies that the target data type is

CLOB:

String charData = "CharacterString";

cstmt.setObject(parmInd, charData, java.sql.Types.CLOB);

v Use one of the following types of stream input parameters:

– A java.io.StringReader input parameter with a cstmt.setCharacterStream

call:

java.io.StringReader reader = new java.io.StringReader(charData);

cstmt.setCharacterStream(parmIndex, reader, charData.length);

– A java.io.ByteArrayInputStream parameter with a cstmt.setAsciiStream

call, for ASCII data:

byte[] charDataBytes = charData.getBytes("US-ASCII");

java.io.ByteArrayInputStream byteStream =

 new java.io.ByteArrayInputStream (charDataBytes);

cstmt.setAsciiStream(parmIndex, byteStream, charDataBytes.length);

For these calls, you need to specify the exact length of the input data.

v Use a String input parameter with a cstmt.setString call:

cstmt.setString(charData);

30 Application Programming Guide and Reference for Java™

|
|

|

|

|
|

|
|

|
|
|
|

|
|
|
|

|

|
|

|
|
|
|
|

|
|
|

|

|
|

|

|

|
|

|
|

|

|
|

|
|
|
|

|
|
|
|

|

|

|

If the length of the data is greater than 32KB, the JDBC driver assigns the CLOB

data type to the input data.

v Use a String input parameter with a cstmt.setObject call, and specify the target

data type as VARCHAR or LONGVARCHAR:

cstmt.setObject(parmIndex, charData, java.sql.Types.VARCHAR);

If the length of the data is greater than 32KB, the JDBC driver assigns the CLOB

data type to the input data.

 Output parameters for CLOB columns:

 For output parameters for CLOB columns, or input/output parameters that are

used for output from CLOB columns, you can use one of the following techniques:

v Use the CallableStatement.registerOutParameter call to specify that an output

parameter is of type CLOB. Then you can retrieve the parameter value into any

variable that has a data type that is compatible with a CLOB data type. For

example, the following code lets you retrieve a CLOB value into a String

variable:

cstmt.registerOutParameter(parmIndex, java.sql.Types.CLOB);

cstmt.execute();

String charData = cstmt.getString(parmIndex);

v Use the CallableStatement.registerOutParameter call to specify that an output

parameter is of type VARCHAR or LONGVARCHAR:

cstmt.registerOutParameter(parmIndex, java.sql.Types.VARCHAR);

cstmt.execute();

String charData = cstmt.getString(parmIndex);

This technique should be used only if you know that the length of the retrieved

data is less than or equal to 32KB. Otherwise, the data is truncated.

ROWIDs in JDBC with the DB2 Universal JDBC Driver

DB2® UDB for z/OS® and DB2 UDB for iSeries™ support the ROWID data type for

a column in a DB2 table. A ROWID is a value that uniquely identifies a row in a

table.

You can use the following ResultSet methods to retrieve data from a ROWID

column:

v getBytes

v getObject

For getObject, the DB2 Universal JDBC Driver returns an instance of the DB2-only

class com.ibm.db2.jcc.DB2RowID.

You can use the following PreparedStatement methods to set a value for a

parameter that is associated with a ROWID column:

v setBytes

v setObject

For setObject, use the DB2-only type com.ibm.db2.jcc.Types.ROWID or an instance

of the com.ibm.db2.jcc.DB2RowID class as the target type for the parameter.

Example: Using PreparedStatement.setObject with a com.ibm.db2.jcc.DB2Types.ROWID

target type: To set parameter 1, use this form of the SetObject method:

ps.setObject(1, bytes[], com.ibm.db2.jcc.DB2Types.ROWID);

Chapter 2. JDBC application programming 31

|
|

|
|

|

|
|

|

|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

|
|

Example: Using PreparedStatement.setObject with a com.ibm.db2.jcc.DB2RowID target

type: Suppose that rwid is an instance of com.ibm.db2.jcc.DB2RowID. To set

parameter 1, use this form of the SetObject method:

ps.setObject (1, rwid);

To call a stored procedure that is defined with a ROWID output parameter, register

that parameter to be of the com.ibm.db2.jcc.DB2Types.ROWID type.

Example: Using CallableStatement.registerOutParameter with a

com.ibm.db2.jcc.DB2Types.ROWID parameter type: To register parameter 1 of a CALL

statement as a com.ibm.db2.jcc.DB2Types.ROWID data type, use this form of the

registerOutParameter method:

cs.registerOutParameter(1, com.ibm.db2.jcc.DB2Types.ROWID)

Distinct types in JDBC applications

A distinct type is a user-defined data type that is internally represented as a

built-in SQL data type. You create a distinct type by executing the SQL statement

CREATE DISTINCT TYPE.

In a JDBC program, you can create a distinct type using the executeUpdate method

to execute the CREATE DISTINCT TYPE statement. You can also use

executeUpdate to create a table that includes a column of that type. When you

retrieve data from a column of that type, or update a column of that type, you use

Java™ identifiers with data types that correspond to the built-in types on which the

distinct types are based.

The following example creates a distinct type that is based on an INTEGER type,

creates a table with a column of that type, inserts a row into the table, and

retrieves the row from the table:

Connection con;

Statement stmt;

ResultSet rs;

String empNumVar;

int shoeSizeVar;

...

stmt = con.createStatement(); // Create a Statement object

stmt.executeUpdate(

 "CREATE DISTINCT TYPE SHOESIZE AS INTEGER");

 // Create distinct type

stmt.executeUpdate(

 "CREATE TABLE EMP_SHOE (EMPNO CHAR(6), EMP_SHOE_SIZE SHOESIZE)");

 // Create table with distinct type

stmt.executeUpdate("INSERT INTO EMP_SHOE " +

 "VALUES (’000010’, 6)"); // Insert a row

rs=stmt.executeQuery("SELECT EMPNO, EMP_SHOE_SIZE FROM EMP_SHOE);

 // Create ResultSet for query

while (rs.next()) {

 empNumVar = rs.getString(1); // Get employee number

 shoeSizeVar = rs.getInt(2); // Get shoe size (use int

 // because underlying type

 // of SHOESIZE is INTEGER)

 System.out.println("Employee number = " + empNumVar +

 " Shoe size = " + shoeSizeVar);

}

rs.close(); // Close ResultSet

stmt.close(); // Close Statement

Figure 14. Creating and using a distinct type

32 Application Programming Guide and Reference for Java™

Savepoints in JDBC applications

An SQL savepoint represents the state of data and schemas at a particular point in

time within a unit of work. SQL statements exist to set a savepoint, release a

savepoint, and restore data and schemas to the state that the savepoint represents.

The DB2 Universal JDBC Driver supports the following methods for using

savepoints:

Connection.setSavepoint() or Connection.setSavepoint(String name)

Sets a savepoint. These methods return a Savepoint object that is used in later

releaseSavepoint or rollback operations.

 When you execute either of these methods, DB2® executes the form of the

SAVEPOINT statement that includes ON ROLLBACK RETAIN CURSORS.

Connection.releaseSavepoint(Savepoint savepoint)

Releases the specified savepoint, and all subsequently established savepoints.

Connection.rollback(Savepoint savepoint)

Rolls back work to the specified savepoint.

DatabaseMetaData.supportsSavepoints()

Indicates whether a data source supports savepoints.

Although the JDBC/SQLJ Driver for OS/390 and z/OS does not support these

methods, you can still set savepoints, release savepoints, and roll back to

savepoints by executing the SAVEPOINT, RELEASE SAVEPOINT, and ROLLBACK

TO SAVEPOINT SQL statements using the executeUpdate or execute methods.

The following example demonstrates how to set a savepoint, roll back to the

savepoint, and release the savepoint.

Connection con;

Statement stmt;

ResultSet rs;

String empNumVar;

int shoeSizeVar;

...

con.setAutoCommit(false); // set autocommit OFF

stmt = con.createStatement(); // Create a Statement object

stmt.executeUpdate(

 "CREATE DISTINCT TYPE SHOESIZE AS INTEGER");

 // Create distinct type

con.commit(); // Commit the create

stmt.executeUpdate(

 "CREATE TABLE EMP_SHOE (EMPNO CHAR(6), EMP_SHOE_SIZE SHOESIZE)");

 // Create table with distinct type

con.commit(); // Commit the create

stmt.executeUpdate("INSERT INTO EMP_SHOE " +

 "VALUES (’000010’, 6)"); // Insert a row

Savepoint savept = con.setSavepoint(); // Create a savepoint

...

stmt.executeUpdate("INSERT INTO EMP_SHOE " +

 "VALUES (’000020’, 10)"); // Insert another row

conn.rollback(savept); // Roll back work to the point

 // after the first insert

...

con.releaseSavepoint(savept); // Release the savepoint

stmt.close(); // Close the Statement

Figure 15. Setting, rolling back to, and releasing a savepoint in a JDBC application

Chapter 2. JDBC application programming 33

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|
|

|
|
|

|
|

|
|

|
|

|
|

|
|
|
|

|
|
|

Retrieving identity column values in JDBC applications

An identity column is a DB2® table column that provides a way for DB2 to

automatically generate a numeric value for each row. You define an identity

column in a CREATE TABLE or ALTER TABLE statement by specifying the AS

IDENTITY clause when you define a column that has an exact numeric type with a

scale of 0 (SMALLINT, INTEGER, DECIMAL with a scale of zero, or a distinct type

based on one of these types).

If you are using the DB2 Universal JDBC Driver, you can retrieve identity columns

from a DB2 table using JDBC 3.0 methods. In a JDBC program, identity columns

are known as automatically generated keys. To enable retrieval of automatically

generated keys from a table, you need to indicate when you insert rows that you

will want to retrieve automatically generated key values. You do that by setting a

flag in a Connection.prepareStatement, Statement.executeUpdate, or

Statement.execute method call. The statement that is executed must be an INSERT

statement or an INSERT within SELECT statement. Otherwise, the JDBC driver

ignores the parameter that sets the flag.

To retrieve automatically generated keys from a DB2 table, you need to perform

these steps:

1. Use one of the following methods to indicate that you want to return

automatically generated keys:

v If you plan to use the PreparedStatement.executeUpdate method to insert

rows, invoke one of these forms of the Connection.prepareStatement method

to create a PreparedStatement object:

Use the following form for a table on any database server that supports

identity columns.

Connection.prepareStatement(sql-statement,

 Statement.RETURN_GENERATED_KEYS);

Use the following form only for a table on any database server that supports

identity columns and INSERT within SELECT.

Connection.prepareStatement(sql-statement, String [] columnNames);

v If you use the Statement.executeUpdate method to insert rows, invoke one

of these form of the Statement.executeUpdate method:

Use the following form for a table on any database server that supports

identity columns.

Statement.executeUpdate(sql-statement, Statement.RETURN_GENERATED_KEYS);

Use the following form only for a table on any database server that supports

identity columns and INSERT within SELECT.

Statement.executeUpdate(sql-statement, String [] columnNames);

v If you use the Statement.execute method to insert rows, invoke one of these

forms of the Statement.execute method:

Use the following form for a table on any database server that supports

identity columns.

Statement.execute(sql-statement, Statement.RETURN_GENERATED_KEYS);

Use the following form only for a table on any database server that supports

identity columns and INSERT within SELECT.

Statement.execute(sql-statement, String [] columnNames);

2. Invoke the PreparedStatement.getGeneratedKeys method or the

Statement.getGeneratedKeys method to retrieve a ResultSet object that

contains the automatically generated key values.

The data type of the automatically generated keys in the ResultSet is

DECIMAL, regardless of the data type of the corresponding column.

34 Application Programming Guide and Reference for Java™

|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|

|
|

|
|
|

|
|

|

|
|

|
|
|

|
|

|

|
|

|
|
|
|

|
|

The following code creates a table with an identity column, inserts a row into the

table, and retrieves the automatically generated key value for the identity column.

The numbers to the right of selected statements correspond to the previously

described steps.

With any JDBC driver, you can retrieve the most recently assigned value of an

identity column using the DB2 UDB IDENTITY_VAL_LOCAL() built-in function.

Execute code similar to this:

import java.sql.*;

import java.math.*;

import com.ibm.db2.jcc.*;

Connection con;

Statement stmt;

ResultSet rs;

java.math.BigDecimal iDColVar;

...

stmt = con.createStatement(); // Create a Statement object

stmt.executeUpdate(

 "CREATE TABLE EMP_PHONE (EMPNO CHAR(6), PHONENO CHAR(4), " +

 "IDENTCOL INTEGER GENERATED ALWAYS AS IDENTITY)");

 // Create table with identity column

stmt.executeUpdate("INSERT INTO EMP_PHONE " + �1�

 "VALUES (’000010’, "5555")", // Insert a row

 Statement.RETURN_GENERATED_KEYS); // Indicate you want automatically

 // generated keys

rs = stmt.getGeneratedKeys(); // Retrieve the automatically �2�

 // generated key value in a ResultSet.

 // Only one row is returned.

 // Create ResultSet for query

while (rs.next()) {

 java.math.BigDecimal idColVar = rs.getBigDecimal(1);

 // Get automatically generated key

 // value

 System.out.println("automatically generated key value = " + idColVar);

}

rs.close(); // Close ResultSet

stmt.close(); // Close Statement

Figure 16. Retrieving automatically generated keys

String idntVal;

Connection con;

Statement stmt;

ResultSet rs;

...

stmt = con.createStatement(); // Create a Statement object

rs = stmt.executeQuery("SELECT IDENTITY_VAL_LOCAL() FROM SYSIBM.SYSDUMMY1");

 // Get the result table from the query.

 // This is a single row with the most

 // recent identity column value.

while (rs.next()) { // Position the cursor

 idntVal = rs.getString(1); // Retrieve column value

 System.out.println("Identity column value = " + idntVal);

 // Print the column value

}

rs.close(); // Close the ResultSet

stmt.close(); // Close the Statement

Figure 17. Using IDENTITY_VAL_LOCAL() to return the most recent value of an identity

column

Chapter 2. JDBC application programming 35

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

Retrieving multiple result sets from a stored procedure in a

JDBC application

If you call a stored procedure that returns result sets, you need to include code to

retrieve the result sets. The steps that you take depend on whether you know how

many result sets are returned, and whether you know the contents of those result

sets.

 Retrieving a known number of result sets:

 To retrieve result sets when you know the number of result sets and their contents,

follow these steps:

1. Invoke the Statement.execute method or the PreparedStatement.execute

method to call the stored procedure. Use PreparedStatement.execute if the

stored procedure has input parameters.

2. Invoke the getResultSet method to obtain the first result set, which is in a

ResultSet object.

3. In a loop, position the cursor using the next method, and retrieve data from

each column of the current row of the ResultSet object using getXXX methods.

4. If there are n result sets, repeat the following steps n-1 times:

a. Invoke the getMoreResults method to close the current result set and point

to the next result set.

b. Invoke the getResultSet method to obtain the next result set, which is in a

ResultSet object.

c. In a loop, position the cursor using the next method, and retrieve data from

each column of the current row of the ResultSet object using getXXX

methods.

The following code illustrates retrieving two result sets. The first result set contains

an INTEGER column, and the second result set contains a CHAR column. The

numbers to the right of selected statements correspond to the previously-described

steps.

 Retrieving an unknown number of result sets:

CallableStatement cstmt;

ResultSet rs;

int i;

String s;

...

cstmt.execute(); // Call the stored procedure �1�

rs = cstmt.getResultSet(); // Get the first result set �2�

while (rs.next()) { // Position the cursor �3�

 i = rs.getInt(1); // Retrieve current result set value

 System.out.println("Value from first result set = " + i);

 // Print the value

}

cstmt.getMoreResults(); // Point to the second result set �4a�

 // and close the first result set

rs = cstmt.getResultSet(); // Get the second result set �4b�

while (rs.next()) { // Position the cursor �4c�

 s = rs.getString(1); // Retrieve current result set value

 System.out.println("Value from second result set = " + s);

 // Print the value

}

rs.close(); // Close the result set

cstmt.close(); // Close the statement

Figure 18. Retrieving known result sets from a stored procedure

36 Application Programming Guide and Reference for Java™

To retrieve result sets when you do not know the number of result sets or their

contents, you need to retrieve ResultSets, until no more ResultSets are returned.

For each ResultSet, use ResultSetMetaData methods to determine its contents. See

“Learning about a ResultSet using ResultSetMetaData methods” on page 38 for

more information on determining the contents of a ResultSet.

After you call a stored procedure, follow these basic steps to retrieve the contents

of an unknown number of result sets.

1. Check the value that was returned from the execute statement that called the

stored procedure. If the returned value is true, there is at least one result set, so

you need to go to the next step.

2. Repeat the following steps in a loop:

a. Invoke the getResultSet method to obtain a result set, which is in a

ResultSet object. Invoking this method closes the previous result set.

b. Process the ResultSet, as shown in “Learning about a ResultSet using

ResultSetMetaData methods” on page 38.

c. Invoke the getMoreResults method to determine whether there is another

result set. If getMoreResults returns true, go to step 2a to get the next result

set.

The following code illustrates retrieving result sets when you do not know the

number of result sets or their contents. The numbers to the right of selected

statements correspond to the previously-described steps.

 Keeping result sets open:

 In Figure 19, invocation of getMoreResults() closes the ResultSet object that is

returned by the previous invocation of getResultSet. However, if you are using

the DB2 Universal JDBC Driver, you can invoke the JDBC 3 form of

getMoreResults, which has a parameter that determines whether the current

ResultSet or previously-opened ResultSets are closed. This form of

getMoreResults requires JDK 1.4 or later.

You can specify one of these constants:

Statement.KEEP_CURRENT_RESULT

Checks for the next ResultSet, but does not close the current ResultSet.

Statement.CLOSE_CURRENT_RESULT

Checks for the next ResultSet, and closes the current ResultSet.

Statement.CLOSE_ALL_RESULTS

Closes all ResultSets that were previously kept open.

CallableStatement cstmt;

ResultSet rs;

...

boolean resultsAvailable = cstmt.execute(); // Call the stored procedure

while (resultsAvailable) { // Test for result sets �1�

 ResultSet rs = cstmt.getResultSet(); // Get a result set �2a�

 ... // process ResultSet

 resultsAvailable = cstmt.getMoreResults(); // Check for next result set �2c�

 // (Also closes the

 // previous result set)

}

Figure 19. Retrieving unknown result sets from a stored procedure

Chapter 2. JDBC application programming 37

For example, the code in Figure 20 keeps all ResultSets open until the final

ResultSet has been retrieved, and then closes all ResultSets.

Learning about a ResultSet using ResultSetMetaData methods

Previous discussions of retrieving data from a table or stored procedure result set

assumed that you know the number of columns and data types of the columns in

the table or result set. This is not always the case, especially when you are

retrieving data from a remote data source. When you write programs that retrieve

unknown ResultSets, you need to use ResultSetMetaData methods to determine

the characteristics of the ResultSets before you can retrieve data from them.

ResultSetMetaData methods provide the following types of information:

v The number of columns in a ResultSet

v The qualifier for the underlying table of the ResultSet

v Information about a column, such as the data type, length, precision, scale, and

nullability

v Whether a column is read-only

After you invoke the executeQuery method to generate a ResultSet for a query on

a table, follow these basic steps to determine the contents of the ResultSet:

1. Invoke the getMetaData method on the ResultSet object to create a

ResultSetMetaData object.

2. Invoke the getColumnCount method to determine how many columns are in the

ResultSet.

3. For each column in the ResultSet, execute ResultSetMetaData methods to

determine column characteristics.

The results of ResultSetMetaData.getColumnName for the same table definition

might differ, depending on the data source. However, the returned information

correctly reflects the column name information that is stored in the DB2®

catalog for that data source.

For example, the following code demonstrates how to determine the data types of

all the columns in the employee table. The numbers to the right of selected

statements correspond to the previously-described steps.

CallableStatement cstmt;

ResultSet rs;

...

boolean resultsAvailable = cstmt.execute(); // Call the stored procedure

while (resultsAvailable) { // Test for result sets

 ResultSet rs = cstmt.getResultSet(); // Get a result set

 ... // process ResultSet

 resultsAvailable = cstmt.getMoreResults(Statement.KEEP_CURRENT_RESULT);

 // Check for next result set

 // but do not close

 // previous result set

}

resultsAvailable = cstmt.getMoreResults(Statement.CLOSE_ALL_RESULTS);

 // Close the result sets

Figure 20. Keeping retrieved stored procedure result sets open

38 Application Programming Guide and Reference for Java™

Learning about a data source using DatabaseMetaData

methods

The DatabaseMetaData interface contains methods that retrieve information about a

data source. These methods are useful when you write generic applications that

can access various data sources. In these types of applications, you need to test

whether a data source can handle various database operations before you execute

them. For example, you need to determine whether the driver at a data source is at

the JDBC 2.0 level before you invoke JDBC 2.0 methods against that driver.

DatabaseMetaData methods provide the following types of information:

v Features that the data source supports, such as the ANSI SQL level

v Specific information about the data source, such as the driver level

v Limits, such as the maximum number of columns that an index can have

v Whether the data source supports data definition statements (CREATE, ALTER,

DROP, GRANT, REVOKE)

v Lists of objects at the data source, such as tables, indexes, or procedures

v Whether the data source supports various JDBC 2.0 functions, such as batch

updates or scrollable ResultSets

v A list of scalar functions that the driver supports

To invoke DatabaseMetaData methods, you need to perform these basic steps:

1. Create a DatabaseMetaData object by invoking the getMetaData method on the

connection.

2. Invoke DatabaseMetaData methods to get information about the data source.

3. If the method returns a ResultSet:

a. In a loop, position the cursor using the next method, and retrieve data from

each column of the current row of the ResultSet object using getXXX

methods.

b. Invoke the close method to close the ResultSet object.

String s;

Connection con;

Statement stmt;

ResultSet rs;

ResultSetMetaData rsmtadta;

int colCount

int mtadtaint;

int i;

String colName;

String colType;

...

stmt = con.createStatement(); // Create a Statement object

rs = stmt.executeQuery("SELECT * FROM EMPLOYEE");

 // Get the ResultSet from the query

rsmtadta = rs.getMetaData(); // Create a ResultSetMetaData object �1�

colCount = rsmtadta.getColumnCount(); �2�

 // Find number of columns in EMP

for (i=1; i<= colCount; i++) { �3�

 colName = rsmtadta.getColumnName(); // Get column name

 colType = rsmtadta.getColumnTypeName();

 // Get column data type

 System.out.println("Column = " + colName +

 " is data type " + colType);

 // Print the column value

}

Figure 21. Using ResultSetMetaData methods to get information about a ResultSet

Chapter 2. JDBC application programming 39

#

For example, the following code demonstrates how to use DatabaseMetaData

methods to determine the driver version, to get a list of the stored procedures that

are available at the data source, and to get a list of datetime functions that the

driver supports. The numbers to the right of selected statements correspond to the

previously-described steps.

Learning about parameters in a PreparedStatement using

ParameterMetaData methods

The DB2 Universal JDBC Driver includes support for the ParameterMetaData

interface. The ParameterMetaData interface contains methods that retrieve

information about the parameter markers in a PreparedStatement object.

ParameterMetaData methods provide the following types of information:

v The data types of parameters, including the precision and scale of decimal

parameters.

v The parameters’ database-specific type names. For parameters that correspond to

table columns that are defined with distinct types, these names are the distinct

type names.

v Whether parameters are nullable.

v Whether parameters are input or output parameters.

v Whether the values of a numeric parameter can be signed.

v The fully-qualified Java™ class name that PreparedStatement.setObject uses

when it sets a parameter value.

To invoke ParameterMetaData methods, you need to perform these basic steps:

1. Invoke the Connection.prepareStatement method to create a PreparedStatement

object.

2. Invoke the PreparedStatement.getParameterMetaData method to retrieve a

ParameterMetaData object.

Connection con;

DatabaseMetaData dbmtadta;

ResultSet rs;

int mtadtaint;

String procSchema;

String procName;

String dtfnList;

...

dbmtadta = con.getMetaData(); // Create the DatabaseMetaData object �1�

mtadtaint = dmtadta.getDriverVersion(); �2�

 // Check the driver version

System.out.println("Driver version: " + mtadtaint);

rs = dbmtadta.getProcedures(null, null, "%");

 // Get information for all procedures

while (rs.next()) { // Position the cursor �3a�

 procSchema = rs.getString("PROCEDURE_SCHEM");

 // Get procedure schema

 procName = rs.getString("PROCEDURE_NAME");

 // Get procedure name

 System.out.println(procSchema + "." + procName);

 // Print the qualified procedure name

}

dtfnList = dbmtadta.getTimeDateFunctions();

 // Get list of supported datetime functions

System.out.println("Supported datetime functions:");

System.out.println(dtfnList); // Print the list of datetime functions

rs.close(); // Close the ResultSet �3b�

Figure 22. Using DatabaseMetaData methods to get information about a data source

40 Application Programming Guide and Reference for Java™

#
#

|

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|

3. Invoke ParameterMetaData.getParameterCount to determine the number of

parameters in the PreparedStatement.

4. Invoke ParameterMetaData methods on individual parameters.

For example, the following code demonstrates how to use ParameterMetaData

methods to determine the number and data types of parameters in an SQL

UPDATE statement. The numbers to the right of selected statements correspond to

the previously-described steps.

Making batch updates in JDBC applications

The JDBC drivers that support JDBC 2.0 and above support batch updates. With

batch updates, instead of updating rows of a DB2® table one at a time, you can

direct JDBC to execute a group of updates at the same time. Statements that can be

included in the same batch of updates are known as batchable statements.

If a statement has input parameters or host expressions, you can include that

statement only in a batch that has other instances of the same statement. This type

of batch is known as a homogeneous batch. If a statement has no input parameters,

you can include that statement in a batch only if the other statements in the batch

have no input parameters or host expressions. This type of batch is known as a

heterogeneous batch. Two statements that can be included in the same batch are

known as batch compatible.

Use the following Statement methods for creating, executing, and removing a

batch of SQL updates:

v addBatch

v executeBatch

v clearBatch

Use the following PreparedStatement and CallableStatement method for creating a

batch of parameters so that a single statement can be executed multiple times in a

batch, with a different set of parameters for each execution.

v addBatch

To make batch updates using several statements with no input parameters, follow

these basic steps:

Connection con;

ParameterMetaData pmtadta;

int mtadtacnt;

int sqlType;

...

pstmt = con.prepareStatement(

 "UPDATE EMPLOYEE SET PHONENO=? WHERE EMPNO=?");

 // Create a PreparedStatement object �1�

pmtadta = pstmt.getParameterMetaData(); �2�

 // Create a ParameterMetaData object

mtadtacnt = pmtadta.getParameterCount(); �3�

 // Determine the number of parameters

System.out.println("Number of statement parameters: " + mtadtacnt);

for (int i = 1; i <= mtadtacnt; i++) {

 sqlType = pmtadta.getParameterType(i); �4�

 // Get SQL type for each parameter

 System.out.println("SQL type of parameter " + i " is " + sqlType);

}

...

pstmt.close(); // Close the PreparedStatement

Figure 23. Using ParameterMetaData methods to get information about a PreparedStatement

Chapter 2. JDBC application programming 41

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|
|
|
|
|

1. Disable AutoCommit for the Connection object.

2. Invoke the createStatement method to create a Statement object.

3. For each SQL statement that you want to execute in the batch, invoke the

addBatch method.

4. Invoke the executeBatch method to execute the batch of statements.

5. Check for errors. If no errors occurred:

a. Get the number of rows that were affect by each SQL statement from the

array that the executeBatch invocation returns. This number does not

include rows that were affected by triggers or by referential integrity

enforcement.

b. Invoke the commit method to commit the changes.

To make batch updates using a single statement with several sets of input

parameters, follow these basic steps:

1. Disable AutoCommit for the Connection object.

2. Invoke the prepareStatement method to create a PreparedStatement object for

the SQL statement with input parameters.

3. For each set of input parameter values:

a. Execute setXXX methods to assign values to the input parameters.

b. Invoke the addBatch method to add the set of input parameters to the batch.
4. Invoke the executeBatch method to execute the statements with all sets of

parameters.

5. Check for errors. If no errors occurred:

a. Get the number of rows that were updated by each execution of the SQL

statement from the array that the executeBatch invocation returns.

b. Invoke the commit method to commit the changes.

Example of a batch update: In the following code fragment, two sets of parameters

are batched. An UPDATE statement that takes two input parameters is then

executed twice, once with each set of parameters. The numbers to the right of

selected statements correspond to the previously-described steps.

42 Application Programming Guide and Reference for Java™

Making batch queries in JDBC applications

The DB2 Universal JDBC Driver provides a DB2-only interface that lets you

perform batch queries on a homogeneous batch.

With the DB2PreparedStatement interface, you can execute a single SQL statement

with multiple sets of input parameters.

Use the following PreparedStatement method for creating a batch of parameters so

that a single statement can be executed multiple times in a batch, with a different

set of parameters for each execution.

v addBatch

Use the following DB2PreparedStatement method for executing the batch query.

v executeDB2QueryBatch

To make batch queries using a single statement with several sets of input

parameters, follow these basic steps:

1. Invoke the prepareStatement method to create a PreparedStatement object for

the SQL statement with input parameters.

2. For each set of input parameter values:

a. Execute PreparedStatement.setXXX methods to assign values to the input

parameters.

b. Invoke the PreparedStatement.addBatch method to add the set of input

parameters to the batch.
3. Cast the PreparedStatement object to a DB2PreparedStatement object.

4. Invoke the DB2PreparedStatement.executeBatch method to execute the

statement with all sets of parameters.

5. Check for errors.

try {

...

 connection con.setAutoCommit(false); �1�

 PreparedStatement prepStmt = con.prepareStatement(

 "UPDATE DEPT SET MGRNO=? WHERE DEPTNO=?"); �2�

 prepStmt.setString(1,mgrnum1); �3a�

 prepStmt.setString(2,deptnum1);

 prepStmt.addBatch(); �3b�

 prepStmt.setString(1,mgrnum2);

 prepStmt.setString(2,deptnum2);

 prepStmt.addBatch();

 int [] numUpdates=prepStmt.executeBatch(); �4�

 for (int i=0; i < numUpdates.length; i++) { �5a�

 if (numUpdates[i] == -2)

 System.out.println("Execution " + i +

 ": unknown number of rows updated");

 else

 System.out.println("Execution " + i +

 "successful: " numUpdates[i] + " rows updated");

 }

 con.commit(); �5b�

} catch(BatchUpdateException b) {

 // process BatchUpdateException

}

Figure 24. Performing a batch update

Chapter 2. JDBC application programming 43

#

#
#

#
#

#
#
#
#

#
#

#
#

#
#

#

#
#

#
#

#

#
#

#

Example of a batch query: In the following code fragment, two sets of parameters

are batched. A SELECT statement that takes two input parameters is then executed

twice, once with each set of parameters. The numbers to the right of selected

statements correspond to the previously described steps.

Retrieving information from a BatchUpdateException

When an error occurs during execution of a statement in a batch, processing

continues. However, executeBatch throws a BatchUpdateException. A

BatchUpdateException object contains the following items:

v A String object that contains a description of the error, or null.

v A String object that contains the SQLSTATE for the failing SQL statement, or

null

v An integer value that contains the error code, or zero

v An integer array of update counts for SQL statements in the batch, or null

v A pointer to an SQLException object, or null

One BatchUpdateException is thrown for the entire batch. At least one

SQLException object is chained to the BatchUpdateException object. The

SQLException objects are chained in the same order as the corresponding

statements were added to the batch. To help you match SQLException objects to

statements in the batch, the error description field for each SQLException object

begins with this string:

Error for batch element #n:

n is the number of the statement in the batch.

To retrieve information from the BatchUpdateException, follow these steps:

1. Use the BatchUpdateException.getUpdateCounts method to determine the

number of rows that each SQL statement updated. getUpdateCounts returns -2

if the number of updated rows cannot be determined, or -3 if an error occurred

during an update.

2. Use SQLException methods getMessage, getSQLState, and getErrorCode to

retrieve the description of the error, the SQLSTATE, and the error code for the

first error.

3. Use the BatchUpdateException.getNextException method to get a chained

SQLException.

4. In a loop, execute the getMessage, getSQLState, getErrorCode, and

getNextException method calls to obtain information about an SQLException

and get the next SQLException.

try {

...

 PreparedStatement prepStmt = con.prepareStatement(

 "SELECT EMPNO FROM EMPLOYEE WHERE EMPNO=?"); �1�

 prepStmt.setString(1,empnum1); �2a�

 prepStmt.addBatch(); �2b�

 prepStmt.setString(1,empnum2);

 prepStmt.addBatch();

 ((com.ibm.db2.jcc.DB2PreparedStatement)prepStmt).executeDB2QueryBatch();

 �3,4�

} catch(BatchUpdateException b) { �5�

 // process BatchUpdateException

}

Figure 25. Performing a batch query

44 Application Programming Guide and Reference for Java™

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

#
#
#
#
#

Example of obtaining information from a BatchUpdateException: The following

code fragment demonstrates how to obtain the fields of a BatchUpdateException

and the chained SQLException objects. The numbers to the right of selected

statements correspond to the previously-described steps.

 To obtain information about warnings, use the Statement.getWarnings method on

the object on which you ran the executeBatch method. You can then retrieve an

error description, SQLSTATE, and error code for each SQLWarning object.

Restrictions on executing statements in a batch:

v If you try to execute a SELECT statement in a batch, a BatchUpdateException is

thrown.

v A CallableStatement object that you execute in a batch can contain output

parameters. However, you cannot retrieve the values of the output parameters. If

you try to do so, a BatchUpdateException is thrown.

v You cannot retrieve ResultSet objects from a CallableStatement object that you

execute in a batch. A BatchUpdateException is not thrown, but the getResultSet

method invocation returns a null value.

Characteristics of a JDBC ResultSet under the DB2 Universal

JDBC Driver

In addition to moving forward, one row at a time, through a ResultSet, you might

want to do the following things:

v Move backward or go directly to a specific row

v Update or delete rows of a ResultSet

v Leave the ResultSet open after a COMMIT

The DB2 Universal JDBC Driver provides the capability to do these things.

The following terms describe characteristics of a ResultSet:

scrollability

Whether the cursor can move forward, backward, or to a specific row.

try {

 // Batch updates

} catch(BatchUpdateException buex) {

 System.err.println("Contents of BatchUpdateException:");

 System.err.println(" Update counts: ");

 int [] updateCounts = buex.getUpdateCounts(); �1�

 for (int i = 0; i < updateCounts.length; i++) {

 System.err.println(" Statement " + i + ":" + updateCounts[i]);

 }

 System.err.println(" Message: " + buex.getMessage()); �2�

 System.err.println(" SQLSTATE: " + buex.getSQLState());

 System.err.println(" Error code: " + buex.getErrorCode());

 SQLException ex = buex.getNextException(); �3�

 while (ex != null) { �4�

 System.err.println("SQL exception:");

 System.err.println(" Message: " + ex.getMessage());

 System.err.println(" SQLSTATE: " + ex.getSQLState());

 System.err.println(" Error code: " + ex.getErrorCode());

 ex = ex.getNextException();

 }

}

Figure 26. Retrieving a BatchUpdateException fields

Chapter 2. JDBC application programming 45

updatability

Whether the cursor can be used to update or delete rows. This characteristic

does not apply to a ResultSet that is returned from a stored procedure,

because a stored procedure ResultSet cannot be updated.

holdability

Whether the cursor stays open after a COMMIT.

A scrollable ResultSet in JDBC is equivalent to the result table of a DB2® cursor

that is declared as SCROLL. A scrollable cursor can be insensitive or sensitive.

Insensitive means that changes to the underlying table after the cursor is opened

are not visible to the cursor. Insensitive cursors are read-only. Sensitive means the

following things:

v Changes that the cursor makes to the underlying table are always visible to the

cursor.

v Changes that are made by other means to the underlying table can be visible to

the cursor. In DB2, if the rows are fetched with FETCH INSENSITIVE, changes

that are made by other means are not visible to the cursor. If the rows are

fetched with FETCH SENSITIVE, changes that are made by other means are

visible to the cursor. In JDBC, calling the refreshRow method before calling

getXXX methods has the same effect as FETCH SENSITIVE.

A JDBC ResultSet can also be static or dynamic, if the database server supports

both attributes. You determine whether scrollable cursors in a program are static or

dynamic by setting the cursorSensitivity property. See “Properties for the DB2

Universal JDBC Driver” on page 185 for more information about the

cursorSensitivity property.

Important: Like static scrollable cursors in any other language, JDBC static

scrollable ResultSets use declared temporary tables for their internal processing.

This means that before you can execute any applications that contain JDBC static

scrollable ResultSets, your database administrator needs to create a temporary

database and temporary table spaces for those declared temporary tables. See Part

2 of DB2 Installation Guide for detailed information on creating the temporary

database and temporary table spaces.

If a JDBC ResultSet is static, the size of the result table and the order of the rows

in the result table do not change after the cursor is opened. This means that you

cannot insert into a result table, and if you delete a row of a result table, a delete

hole occurs.You can test whether the current row is a delete hole by using the

rowDeleted method. See “Comparison of driver support for JDBC APIs” on page

107 for a complete list of the methods that are supported for ResultSets.

Specifying updatability, scrollability, and holdability for

ResultSets in JDBC applications

To specify scrollability, updatability, and holdability for a ResultSet, you need to

follow these steps:

1. If the SELECT statement that defines the ResultSet has no input parameters,

invoke the createStatement method to create a Statement object. Otherwise,

invoke the prepareStatement method to create a PreparedStatement object.

You need to specify forms of the createStatement or prepareStatement

methods that include the resultSetType, resultSetConcurrency, or

resultSetHoldability parameters.

46 Application Programming Guide and Reference for Java™

|
|
|
|
|

|
|
|
|
|
|
|

The form of the createStatement method that supports scrollability and

updatability is:

createStatement(int resultSetType, int resultSetConcurrency);

The form of the createStatement method that supports scrollability,

updatability, and holdability is:

createStatement(int resultSetType, int resultSetConcurrency,

 int resultSetHoldability);

The form of the prepareStatement method that supports scrollability and

updatability is:

prepareStatement(String sql, int resultSetType,

 int resultSetConcurrency);

The form of the prepareStatement method that supports scrollability,

updatability, and holdability is:

prepareStatement(String sql, int resultSetType,

 int resultSetConcurrency, int resultSetHoldability);

See Table 3 for a list of valid values for resultSetType and resultSetConcurrency.

 Table 3. Valid combinations of resultSetType and resultSetConcurrency for scrollable

ResultSets

resultSetType value resultSetConcurrency value

TYPE_FORWARD_ONLY CONCUR_READ_ONLY

TYPE_FORWARD_ONLY CONCUR_UPDATABLE

TYPE_SCROLL_INSENSITIVE CONCUR_READ_ONLY

TYPE_SCROLL_SENSITIVE CONCUR_READ_ONLY

TYPE_SCROLL_SENSITIVE CONCUR_UPDATABLE

resultSetHoldability has two possible values: HOLD_CURSORS_OVER_COMMIT and

CLOSE_CURSORS_AT_COMMIT. Either of these values can be specified with any

valid combination of resultSetConcurrency and resultSetHoldability. The value that

you set overrides the default holdability for the connection.

2. If the SELECT statement has input parameters, invoke setXXX methods to pass

values to the input parameters.

3. Invoke the executeQuery method to obtain the result table from the SELECT

statement in a ResultSet object.

4. For each row that you want to access:

a. Position the cursor using one of the methods that are listed in Table 4.

 Table 4. ResultSet methods for positioning a scrollable cursor

Method Positions the cursor

first() On the first row of the ResultSet

last() On the last row of the ResultSet

next()1 On the next row of the ResultSet

previous()2 On the previous row of the ResultSet

absolute(int n)3 If n>0, on row n of the ResultSet. If n<0, and m is the

number of rows in the ResultSet, on row m+n+1 of

the ResultSet.

Chapter 2. JDBC application programming 47

Table 4. ResultSet methods for positioning a scrollable cursor (continued)

Method Positions the cursor

relative(int n)4,5 If n>0, on the row that is n rows after the current row.

If n<0, on the row that is n rows before the current

row. If n=0, on the current row.

afterLast() After the last row in the ResultSet

beforeFirst() Before the first row in the ResultSet

Notes:

1. If the cursor is before the first row of the ResultSet, this method positions the cursor on

the first row.

2. If the cursor is after the last row of the ResultSet, this method positions the cursor on

the last row.

3. If the absolute value of n is greater than the number of rows in the result set, this

method positions the cursor after the last row if n is positive, or before the first row if n

is negative.

4. The cursor must be on a valid row of the ResultSet before you can use this method. If

the cursor is before the first row or after the last row, the method throws an

SQLException.

5. Suppose that m is the number of rows in the ResultSet and x is the current row number

in the ResultSet. If n>0 and x+n>m, the driver positions the cursor after the last row. If

n<0 and x+n<1, the driver positions the cursor before the first row.

b. If you need to know the current cursor position, use the getRow, isFirst,

isLast, isBeforeFirst, or isAfterLast method to obtain this information.

c. If you specified a resultSetType value of TYPE_SCROLL_SENSITIVE in step 1 on

page 46, and you need to see the latest values of the current row, invoke the

refreshRow method.

Recommendation: Because refreshing the rows of a ResultSet can have a

detrimental effect on the performance of your applications, you should

invoke refreshRow only when you need to see the latest data.

d. Perform one or more of the following operations:

v To retrieve data from each column of the current row of the ResultSet

object, use getXXX methods.

v To update the current row from the underlying table, use updateXXX

methods to assign column values to the current row of the ResultSet.

Then use updateRow to update the corresponding row of the underlying

table. If you decide that you do not want to update the underlying table,

invoke the cancelRowUpdates method instead of the updateRow method.

The resultSetConcurrency value for the ResultSet must be

CONCUR_UPDATABLE for you to use these methods.

v To delete the current row from the underlying table, use the deleteRow

method. Invoking deleteRow causes the driver to replace the current row

of the ResultSet with a hole.

The resultSetConcurrency value for the ResultSet must be

CONCUR_UPDATABLE for you to use this method.
5. Invoke the close method to close the ResultSet object.

6. Invoke the close method to close the Statement or PreparedStatement object.

For example, the following code demonstrates how to retrieve all rows from the

employee table in reverse order, and update the phone number for employee

48 Application Programming Guide and Reference for Java™

number ″000010″. The numbers to the right of selected statements correspond to

the previously-described steps.

Creating and deploying DataSource objects

JDBC versions starting with version 2.0 provide the DataSource interface for

connecting to a data source. Using the DataSource interface is the preferred way to

connect to a data source. Using the DataSource interface involves two parts:

v Creating and deploying DataSource objects. This is usually done by a system

administrator, using a tool such as WebSphere® Application Server.

v Using the DataSource objects to create a connection. This is done in the

application program.

This topic contains information that you need if you create and deploy the

DataSource objects yourself.

The DB2 Universal JDBC Driver provides the following DataSource

implementations:

v com.ibm.db2.jcc.DB2SimpleDataSource, which does not support connection

pooling. You can use this implementation with Universal Driver type 2

connectivity or Universal Driver type 4 connectivity.

v com.ibm.db2.jcc.DB2XADataSource, which supports connection pooling and

distributed transactions. The connection pooling is provided by WebSphere

Application Server or another application server. You can use this

implementation only with Universal Driver type 4 connectivity.

The JDBC/SQLJ Driver for OS/390® provides the following DataSource

implementations:

v com.ibm.db2.jcc.DB2SimpleDataSource, which does not contain built-in

connection pooling.

String s;

Connection con;

Statement stmt;

ResultSet rs;

...

stmt = con.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,

 ResultSet.CONCUR_UPDATABLE); �1�

 // Create a Statement object

 // for a scrollable, updatable

 // ResultSet

rs = stmt.executeQuery("SELECT EMPNO FROM EMPLOYEE FOR UPDATE OF PHONENO");

 // Create the ResultSet �3�

rs.afterLast(); // Position the cursor at the end of

 // the ResultSet �4a�

while (rs.previous()) { // Position the cursor backward

 s = rs.getString("EMPNO"); // Retrieve the employee number �4d�

 // (column 1 in the result

 // table)

 System.out.println("Employee number = " + s);

 // Print the column value

 if (s.compareTo("000010") == 0) { // Look for employee 000010

 updateString("PHONENO","4657"); // Update their phone number

 updateRow(); // Update the row

 }

}

rs.close(); // Close the ResultSet �5�

stmt.close(); // Close the Statement �6�

Figure 27. Using a scrollable cursor

Chapter 2. JDBC application programming 49

Because CICS® does contain built-in connection pooling, you need to use this

class for CICS applications.

v com.ibm.db2.jcc.DB2DataSource, which contains built-in connection pooling.

See Chapter 10, “JDBC and SQLJ connection pooling support,” on page 299 for a

discussion of connection pooling.

When you create and deploy a DataSource object, you need to perform these tasks:

1. Create an instance of the appropriate DataSource implementation.

2. Set the properties of the DataSource object.

3. Register the object with the Java™ Naming and Directory Interface (JNDI)

naming service.

The example in Figure 28 shows how to perform these tasks.

 �1� Creates an instance of the DB2SimpleDataSource class.

�2� This statement and the next three statements set values for properties of this

DB2SimpleDataSource object.

�3� Creates a context for use by JNDI.

�4� Associates DBSimple2DataSource object db2ds with the logical name

jdbc/sampledb. An application that uses this object can refer to it by the name

jdbc/sampledb.

Providing extended client information to the DB2 server with

the DB2 Universal JDBC Driver

The DB2 Universal JDBC Driver provides DB2®-only methods that you can use to

provide extra information about the client to the server. This information can be

used for accounting or workload management. The information is sent to the DB2

server when the application performs an action that accesses the server, such as

executing SQL.

The methods are listed in Table 5.

 Table 5. Methods that provide client information to the DB2 server

Method Information provided

setDB2ClientUser User name for a connection

setDB2ClientWorkstation Client workstation name for a connection

import java.sql.*; // JDBC base

import javax.naming.*; // JNDI Naming Services

import javax.sql.*; // JDBC 2.0 standard extension APIs

import com.ibm.db2.jcc.*; // DB2 implementation of JDBC 2.0

 // standard extension APIs

DB2SimpleDataSource db2ds = new com.ibm.db2.jcc.DB2SimpleDataSource(); �1�

db2ds.setDatabaseName("db2loc1"); �2�

db2ds.setDescription("Our Sample Database");

db2ds.setUser("john");

db2ds.setPassword("db2"); ...
Context ctx=new InitialContext(); �3�

Ctx.bind("jdbc/sampledb",db2ds); �4�

Figure 28. Example of creating and deploying a DataSource object

50 Application Programming Guide and Reference for Java™

|

|

|
|
|
|
|

|

||

||

||

||

Table 5. Methods that provide client information to the DB2 server (continued)

Method Information provided

setDB2ClientApplicationInformation Name of the application that is working with

a connection

setDB2ClientAccountingInformation Accounting information

To set the extended information:

1. Create a Connection.

2. Cast the java.sql.Connection object to a com.ibm.db2.jcc.DB2Connection.

3. Call any of the methods shown in Table 5 on page 50.

4. Execute an SQL statement to cause the information to be sent to the DB2 server.

The following code performs the previous steps to pass a user name and a

workstation name to the DB2 server. The numbers to the right of selected

statements correspond to the previously-described steps.

System monitoring for the DB2 Universal JDBC Driver

To assist you in monitoring the performance of your applications with the DB2

Universal JDBC Driver, the DB2SystemMonitor interface is provided. This interface

contains methods that collect the following data about a connection:

Core driver time

The sum of elapsed monitored API times that were collected while system

monitoring was enabled, in microseconds. In general, only APIs that might

result in network I/O or DB2 server interaction are monitored.

Network I/O time

The sum of elapsed network I/O times that were collected while system

monitoring was enabled, in microseconds.

Server time

The sum of all reported DB2 server elapsed times that were collected while

system monitoring was enabled, in microseconds.

public class ClientInfoTest {

 public static void main(String[] args) {

 String url = "jdbc:db2://sysmvs1.stl.ibm.com:5021/san_jose";

 try {

 Class.forName("com.ibm.db2.jcc.DB2Driver");

 String user = "db2adm";

 String password = "db2adm";

 Connection conn = DriverManager.getConnection(url, �1�

 user, password);

 if (conn instanceof DB2Connection) {

 DB2Connection db2conn = (DB2Connection) conn; �2�

 db2conn.setDB2ClientUser("Michael L Thompson"); �3�

 db2conn.setDB2ClientWorkstation("sjwkstn1");

 // Execute SQL to force extended client information to be sent

 // to the server

 conn.prepareStatement("SELECT * FROM SYSIBM.SYSDUMMY1"

 + "WHERE 0 = 1").executeQuery(); �4�

 }

 } catch (Throwable e) {

 e.printStackTrace();

 }

 }

}

Figure 29. Example of passing extended client information to a DB2 server

Chapter 2. JDBC application programming 51

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

||

||
|

||
|

|
|
|
|
|

|
|
|
|

#

#
#
#

#
#
#
#

#
#
#

#
#
#

Currently, DB2 UDB for Linux, UNIX and Windows servers do not support

this function.

Application time

The sum of the application, JDBC driver, network I/O, and DB2 server

elapsed times, in milliseconds.

To collect system monitoring data, perform these basic steps:

1. Invoke the DB2Connection.getDB2SystemMonitor method to create a

DB2SystemMonitor object.

2. Invoke the DB2SystemMonitor.enable method to enable the DB2SystemMonitor

object for the connection.

3. Invoke the DB2SystemMonitor.start method to start system monitoring.

4. When the activity that is to be monitored is complete, invoke

DB2SystemMonitor.stop to stop system monitoring.

5. Invoke the DB2SystemMonitor.getCoreDriverTimeMicros,

DB2SystemMonitor.getNetworkIOTimeMicros,

DB2SystemMonitor.getServerTimeMicros, or

DB2SystemMonitor.getApplicationTimeMillis methods to retrieve the elapsed

time data.

For example, the following code demonstrates how to collect each type of elapsed

time data. The numbers to the right of selected statements correspond to the

previously described steps.

52 Application Programming Guide and Reference for Java™

#
#

#
#
#

#

#
#

#
#

#

#
#

#
#
#
#
#

#
#
#
#

JDBC application programming concepts for the JDBC/SQLJ Driver for

OS/390 and z/OS

The following topics contain information that applies only to the JDBC/SQLJ

Driver for OS/390 and z/OS:

v “Connecting to a data source using the DriverManager interface with a

JDBC/SQLJ Driver for OS/390 and z/OS” on page 54

import java.sql.*;

import com.ibm.db2.jcc.*;

public class TestSystemMonitor

{

 public static void main(String[] args)

 {

 String url = "jdbc:db2://sysmvs1.svl.ibm.com:5021/san_jose";

 String user="db2adm";

 String password="db2adm";

 try

 {

 // Load the DB2 Universal JDBC Driver

 Class.forName("com.ibm.db2.jcc.DB2Driver");

 System.out.println("**** Loaded the JDBC driver");

 // Create the connection using the DB2 Universal JDBC Driver

 Connection conn = DriverManager.getConnection (url,user,password);

 // Commit changes manually

 conn.setAutoCommit(false);

 System.out.println("**** Created a JDBC connection to the data source");

 DB2SystemMonitor systemMonitor = �1�

 ((DB2Connection)conn).getDB2SystemMonitor();

 systemMonitor.enable(true); �2�

 systemMonitor.start(DB2SystemMonitor.RESET_TIMES); �3�

 Statement stmt = conn.createStatement();

 int numUpd = stmt.executeUpdate(

 "UPDATE EMPLOYEE SET PHONENO='4657' WHERE EMPNO='000010'");

 systemMonitor.stop(); �4�

 System.out.println("Server elapsed time (microseconds)="

 + systemMonitor.getServerTimeMicros()); �5�

 System.out.println("Network I/O elapsed time (microseconds)="

 + systemMonitor.getNetworkIOTimeMicros());

 System.out.println("Core driver elapsed time (microseconds)="

 + systemMonitor.getCoreDriverTimeMicros());

 System.out.println("Application elapsed time (milliseconds)="

 + systemMonitor.getApplicationTimeMillis());

 conn.rollback();

 stmt.close();

 conn.close();

 }

 // Handle errors

 catch(ClassNotFoundException e)

 {

 System.err.println("Unable to load DB2 Universal JDBC Driver, " + e);

 }

 catch(SQLException e)

 {

 System.out.println("SQLException: " + e);

 e.printStackTrace();

 }

 }

}

Figure 30. Example of using DB2SystemMonitor methods to collect system monitoring data

Chapter 2. JDBC application programming 53

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

v “Handling an SQLException under the JDBC/SQLJ Driver for OS/390 and

z/OS” on page 55

v “Handling an SQLWarning under the JDBC/SQLJ Driver for OS/390 and z/OS”

on page 58

v “Using LOBs in JDBC applications with the JDBC/SQLJ Driver for OS/390 and

z/OS” on page 58

v “Using ROWIDs with the JDBC/SQLJ Driver for OS/390 and z/OS” on page 59

v “Using graphic string constants in JDBC applications” on page 60

Connecting to a data source using the DriverManager

interface with a JDBC/SQLJ Driver for OS/390 and z/OS

A JDBC application establishes a connection to a data source using the JDBC

DriverManager interface, which is part of the java.sql package.

The Java application first loads the JDBC driver by invoking the Class.forName

method. After the application loads the driver, it connects to a database server by

invoking the DriverManager.getConnection method.

For the JDBC/SQLJ Driver for OS/390 and z/OS, you load the driver by invoking

the Class.forName method with one of the following arguments:

v COM.ibm.db2os390.sqlj.jdbc.DB2SQLJDriver

This is the preferred name for the JDBC/SQLJ Driver for OS/390 and z/OS.

v ibm.sql.DB2Driver

This name is available only to maintain compatibility with older DB2 UDB for

z/OS JDBC applications. The ibm.sql.DB2Driver class automatically forwards all

driver API calls to the COM.ibm.db2os390.sqlj.jdbc.DB2SQLJDriver.

The following code demonstrates loading a JDBC/SQLJ Driver for OS/390 and

z/OS:

try {

 // Load the DB2 for z/OS driver

 Class.forName("COM.ibm.db2os390.sqlj.jdbc.DB2SQLJDriver");

} catch (ClassNotFoundException e) {

 e.printStackTrace();

}

The catch block is used to print an error if the driver is not found.

After you load the driver, you connect to the data source by invoking the

DriverManager.getConnection method. You can use one of the following forms of

getConnection:

getConnection(String url);

getConnection(String url, String user, String password);

getConnection(String url, java.util.Properties info);

The url argument of the getConnection method represents the data source. Specify

one of the following url values for a DB2 UDB for z/OS data source:

jdbc:db2os390:location-name

jdbc:db2os390sqlj:location-name

Each format results in the same behavior. Both forms are provided for

compatibility with existing DB2 UDB for z/OS JDBC applications.

If location-name is not the name of the local DB2 subsystem, location-name must be

defined in the SYSIBM.LOCATIONS catalog table. If location-name is the local site,

54 Application Programming Guide and Reference for Java™

|
|
|

|

location-name must have been specified in field DB2 LOCATION NAME of the

DISTRIBUTED DATA FACILITY panel during DB2 installation.

In addition to the URL values shown above for a DB2 UDB for z/OS data source,

the following URL has a special meaning for type 2 drivers.

jdbc:default:connection

This URL is intended for environments that support an already-existing

connection, such as CICS, IMS, and stored procedures.

For some connections, you need to specify a user ID and password. To do that, use

the form of the getConnection method that specifies user and password, or the form

that specifies info.

The info argument is an object of type java.util.Properties that contains a set of

driver properties for the connection. For the JDBC/SQLJ Driver for OS/390 and

z/OS, you should specify only the user and password properties.

The following example demonstrates how to specify the user ID and password as

properties when you create a connection to a data source:

Properties properties = new Properties(); // Create Properties object

properties.put("user", "db2adm"); // Set user ID for connection

properties.put("password", "db2adm"); // Set password for connection

String url = "jdbc:db2os390:san_jose";

 // Set URL for data source

Connection con = DriverManager.getConnection(url, properties);

 // Create connection

Do not specify a user ID or password for a CICS or IMS connection.

Handling an SQLException under the JDBC/SQLJ Driver for

OS/390 and z/OS

As in all Java programs, error handling is done using try/catch blocks. Methods

throw exceptions when an error occurs, and the code in the catch block handles

those exceptions.

JDBC provides the SQLException class for handling errors. All JDBC methods

throw an instance of SQLException when an error occurs during their execution.

According to the JDBC specification, an SQLException object contains the following

information:

v A String object that contains a description of the error, or null

v A String object that contains the SQLSTATE, or null

v An int value that contains an error code

v A pointer to the next SQLException, or null

The JDBC/SQLJ Driver for OS/390 and z/OS provides a

com.ibm.db2.jcc.DB2Diagnosable interface that extends the SQLException class. The

DB2Diagnosable interface gives you more information about errors that occur when

DB2® is accessed. If the JDBC driver detects an error, DB2Diagnosable gives you the

same information as the standard SQLException class. However, if DB2 detects the

error, DB2Diagnosable adds the following method, which give you additional

information about the error:

getSqlca

Returns an DB2Sqlca object with the following information:

v An SQL error code

Chapter 2. JDBC application programming 55

|

v The SQLERRMC values

v The SQLERRP value

v The SQLERRD values

v The SQLWARN values

v The SQLSTATE

The basic steps for handling an SQLException in a JDBC program that runs under

the JDBC/SQLJ Driver for OS/390 and z/OS are:

1. Give the program access to the com.ibm.db2.jcc.DB2Diagnosable interface and

the com.ibm.db2.jcc.DB2Sqlca class. You can do that by importing them:

com.ibm.db2.jcc.DB2Diagnosable

com.ibm.db2.jcc.DB2Sqlca

2. Put code that can generate an SQLException in a try block.

3. In the catch block, perform the following steps in a loop:

a. Test whether you have retrieved the last SQLException. If not, continue to

the next step.

b. Invoke the SQLException.getMessage method to retrieve the error

description.

c. Invoke the SQLException.getSQLState method to retrieve the SQLSTATE

value.

d. Invoke the SQLException.getErrorCode method to retrieve an SQL error

code value.

e. Check whether the current SQLException is an instance of a DB2Diagnosable

object. If so:

1) Invoke the DB2Diagnosable.getSqlca method to retrieve the DB2Sqlca

object.

2) Invoke the DB2Sqlca.getSqlCode method to retrieve an SQL error code

value.

3) Invoke the DB2Sqlca.getSqlErrmc method to retrieve a string that

contains all SQLERRMC values, or invoke the

DB2Sqlca.getSqlErrmcTokens method to retrieve the SQLERRMC values

in an array.

4) Invoke the DB2Sqlca.getSqlErrp method to retrieve the SQLERRP value.

5) Invoke the DB2Sqlca.getSqlErrd method to retrieve the SQLERRD

values in an array.

6) Invoke the DB2Sqlca.getSqlWarn method to retrieve the SQLWARN

values in an array.

7) Invoke the DB2Sqlca.getSqlState method to retrieve the SQLSTATE

value.
f. Invoke the SQLException.getNextException method to retrieve the next

SQLException.

The following code illustrates a catch block that uses the DB2 version of

SQLException that is provided with the JDBC/SQLJ Driver for OS/390 and z/OS.

The numbers to the right of selected statements correspond to the

previously-described steps.

56 Application Programming Guide and Reference for Java™

import java.sql.*; // Import JDBC API package

import com.ibm.db2.jcc.DB2Diagnosable; // Import packages for DB2 �1�

import com.ibm.db2.jcc.DB2Sqlca; // SQLException support

...

try { �2�

 // Code that could generate SQLExceptions

 ...

} catch(SQLException sqle) {

 while(sqle != null) { // Check whether there are more �3a�

 // SQLExceptions to process

 System.out.println ("SQLException: " + sqle +

 ". Message=" + sqle.getMessage() + �3b�

 ". SQLSTATE=" + sqle.getSQLState() + �3c�

 " Error code=" + sqle.getErrorCode()); �3d�

 // Print out the standard SQLException

 sqle.printStackTrace();

 //=====> Optional DB2-only error processing

 if (sqle instanceof DB2Diagnosable) { �3e�

 // Check if DB2-only information exists

 com.ibm.db2.jcc.DB2Diagnosable diagnosable =

 DB2Sqlca sqlca = diagnosable.getSqlca(); �3e1�

 // Get DB2Sqlca object

 if (sqlca != null) { // Check that DB2Sqlca is not null

 int sqlCode = sqlca.getSqlCode(); // Get the SQL error code �3e2�

 String sqlErrmc = sqlca.getSqlErrmc(); �3e3�

 // Get the entire SQLERRMC

 String[] sqlErrmcTokens = sqlca.getSqlErrmcTokens();

 // You can also retrieve the

 // individual SQLERRMC tokens

 String sqlErrp = sqlca.getSqlErrp(); �3e4�

 // Get the SQLERRP

 int[] sqlErrd = sqlca.getSqlErrd(); �3e5�

 // Get SQLERRD fields

 char[] sqlWarn = sqlca.getSqlWarn(); �3e6�

 // Get SQLWARN fields

 String sqlState = sqlca.getSqlState(); �3e7�

 // Get SQLSTATE

 System.err.println ("--------------- SQLCA ---------------");

 System.err.println ("Error code: " + sqlCode);

 System.err.println ("SQLERRMC: " + sqlErrmc);

 for (int i=0; i< sqlErrmcTokens.length; i++) {

 System.err.println (" token " + i + ": " + sqlErrmcTokens[i]);

 }

Figure 31. Processing an SQLException under the JDBC/SQLJ Driver for OS/390 and z/OS

(Part 1 of 2)

Chapter 2. JDBC application programming 57

Internal errors in the JDBC/SQLJ Driver for OS/390 and z/OS: Internal errors in

the DB2 JDBC drivers generate SQLException objects for which the value that is

returned by SQLException.getSQLState is FFFFF, and the value that is returned by

SQLException.getErrorCode is a value that is not documented in DB2 Messages.

These error code values are not DB2 SQL error codes but are values that are

generated by the JDBC driver. If SQLException.getSQLState returns FFFFF, contact

your IBM service representative.

Handling an SQLWarning under the JDBC/SQLJ Driver for

OS/390 and z/OS

Handling of an SQL warning under the JDBC/SQLJ Driver for OS/390 and z/OS

is the same as handling an SQL warning under the DB2 Universal JDBC Driver.

See “Handling an SQLWarning under the DB2 Universal JDBC Driver” on page 26.

Using LOBs in JDBC applications with the JDBC/SQLJ Driver

for OS/390 and z/OS

The JDBC/SQLJ Driver for OS/390 and z/OS includes all of the LOB support in

the JDBC 2.0 specification. See “Comparison of driver support for JDBC APIs” on

page 107 for a list of supported methods. The JDBC/SQLJ Driver for OS/390 and

z/OS also includes support for LOBs in additional methods and for additional

data types.

LOB locator support: The JDBC/SQLJ Driver for OS/390 and z/OS does not use

LOB locators for its support of LOB data types. This means that when you you use

the JDBC/SQLJ Driver for OS/390 and z/OS, and you retrieve data from a LOB

column, you retrieve the entire LOB. If you retrieve very large LOBs in your JDBC

applications, you might need to increase the size of the JDBC application address

space.

 System.err.println ("SQLERRP: " + sqlErrp);

 System.err.println (

 "SQLERRD(1): " + sqlErrd[0] + "\n" +

 "SQLERRD(2): " + sqlErrd[1] + "\n" +

 "SQLERRD(3): " + sqlErrd[2] + "\n" +

 "SQLERRD(4): " + sqlErrd[3] + "\n" +

 "SQLERRD(5): " + sqlErrd[4] + "\n" +

 "SQLERRD(6): " + sqlErrd[5]);

 System.err.println (

 "SQLWARN1: " + sqlWarn[0] + "\n" +

 "SQLWARN2: " + sqlWarn[1] + "\n" +

 "SQLWARN3: " + sqlWarn[2] + "\n" +

 "SQLWARN4: " + sqlWarn[3] + "\n" +

 "SQLWARN5: " + sqlWarn[4] + "\n" +

 "SQLWARN6: " + sqlWarn[5] + "\n" +

 "SQLWARN7: " + sqlWarn[6] + "\n" +

 "SQLWARN8: " + sqlWarn[7] + "\n" +

 "SQLWARN9: " + sqlWarn[8] + "\n" +

 "SQLWARNA: " + sqlWarn[9]);

 System.err.println ("SQLSTATE: " + sqlState);

 // portion of SQLException

 }

 sqle=sqle.getNextException(); // Retrieve next SQLException �3f�

 }

}

Figure 31. Processing an SQLException under the JDBC/SQLJ Driver for OS/390 and z/OS

(Part 2 of 2)

58 Application Programming Guide and Reference for Java™

|

|

|
|
|
|
|

|
|
|
|
|
|

Additional methods supported by the JDBC/SQLJ Driver for OS/390 and z/OS: In

addition to the methods in the JDBC 2.0 specification, the JDBC/SQLJ 2.0 Driver

for OS/390 and z/OS includes LOB support in the following methods:

v You can specify a BLOB column as an argument of the following ResultSet

methods to retrieve data from a BLOB column:

– getAsciiStream

– getBinaryStream

– getBytes

v You can specify a CLOB column as an argument of the following ResultSet

methods to retrieve data from a CLOB column:

– getAsciiStream

– getCharacterStream

– getString

– getUnicodeStream

v You can use the following PreparedStatement methods to set the values for

parameters that correspond to BLOB columns:

– setBinaryStream

– setBytes

v You can use the following PreparedStatement methods to set the values for

parameters that correspond to CLOB columns:

– setAsciiStream

– setCharacterStream

– setString

– setUnicodeStream

v You can retrieve the value of a JDBC CLOB parameter using the following

CallableStatement method:

– getString

Using DBCLOBs with the JDBC/SQLJ 2.0 Driver for OS/390 and z/OS: You can

retrieve data from or store data in DBCLOB columns. However, because Java and

JDBC do not have an equivalent to the DB2 DBCLOB data type, your JDBC

programs need to use methods that are defined for Clob data to pass data to or

from DBCLOB columns.

Restrictions on using LOBs with the JDBC/SQLJ 2.0 Driver for OS/390 and z/OS:

v You cannot call a stored procedure that has LOB locator parameters or DBCLOB

parameters.

v Inherited PreparedStatement methods setAsciiStream and setUnicodeStream

cannot be used to set CLOB input parameters in a CallableStatement. Inherited

PreparedStatement methods setBinaryStream and setBytes cannot be used to

set BLOB input parameters in a CallableStatement. Method getBytes cannot be

used to retrieve BLOB output parameters in a CallableStatement.

v For the JDBC/SQLJ 2.0 Driver for OS/390 and z/OS, the maximum size for a

LOB parameter of type OUT or INOUT in a CallableStatement is 1MB. IN

parameters can be longer.

Using ROWIDs with the JDBC/SQLJ Driver for OS/390 and

z/OS

You can use the following ResultSet method to retrieve data from a ROWID

column:

v getBytes

Chapter 2. JDBC application programming 59

|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|

|

|
|

|
|
|
|
|

|
|
|

You can use the following PreparedStatement method to store data in a ROWID

column:

v setBytes

Using graphic string constants in JDBC applications

In EBCDIC environments, graphic string constants in JDBC applications have the

following form:

G’\uxxxx\uxxxx...\uxxxx’

xxxx is the Unicode value in hexadecimal that corresponds to the desired EBCDIC

graphic character.

For example, an EBCDIC double-byte G has the hexadecimal value 42C7. The

corresponding Unicode hexadecimal value is FF27. Therefore, in JDBC methods,

you represent the graphic string constant for an EBCDIC double-byte G as:

G’\uFF27’

The following code demonstrates using the Statement.executeUpdate method to

execute an SQL statement that contains a graphic string constant:

Connection con;

Statement stmt;

int numUpd;

...

stmt = con.createStatement(); // Create a Statement object

// GRAPHIC_TABLE has one VARGRAPHIC(10) column named VGCOL.

// At least one row contains the string "GRAPHIC" in double-byte

// EBCDIC characters. The Unicode equivalent of "GRAPHIC" is

// G’\uFF27\uFF32\uFF21\uFF30\uFF28\uFF29\uFF23’.

// Update "GRAPHIC" in all rows to "graphic" in double-byte

// EBCDIC characters. The Unicode equivalent of "graphic" is

// G’\uFF47\uFF52\uFF41\uFF50\uFF48\uFF49\uFF43’

numUpd = stmt.executeUpdate(

 "UPDATE GRAPHIC_TABLE " +

 "SET VGCOL=G’\uFF47\uFF52\uFF41\uFF50\uFF48\uFF49\uFF43’ " +

 "WHERE VGCOL=G’\uFF27\uFF32\uFF21\uFF30\uFF28\uFF29\uFF23’");

 // Perform the update

stmt.close(); // Close Statement object

Figure 32. Using graphic string constants in a JDBC application

60 Application Programming Guide and Reference for Java™

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|

|
|

|
|
|

|

|
|
|

Chapter 3. SQLJ application programming

The following topics explain DB2 UDB for z/OS SQLJ application support:

v “Basic SQLJ application programming concepts”

v “Advanced SQLJ application programming concepts” on page 85

Basic SQLJ application programming concepts

The following topics contain basic information about writing SQLJ applications:

v “Basic steps in writing an SQLJ application”

v “Java packages for SQLJ support” on page 64

v “Variables in SQLJ applications” on page 64

v “Comments in an SQLJ application” on page 66

v “Connecting to a data source using SQLJ” on page 66

v “Setting the isolation level for an SQLJ transaction” on page 71

v “Committing or rolling back SQLJ transactions” on page 71

v “Savepoints in SQLJ applications” on page 72

v “Closing the connection to a data source in an SQLJ application” on page 73

v “SQL statements in an SQLJ application” on page 73

v “Creating and modifying DB2 objects in an SQLJ application” on page 73

v “How an SQLJ application retrieves data from DB2 tables” on page 74

v “Using a named iterator in an SQLJ application” on page 74

v “Using a positioned iterator in an SQLJ application” on page 76

v “Performing positioned UPDATE and DELETE operations in an SQLJ

application” on page 78

v “Multiple open iterators for the same SQL statement in an SQLJ application” on

page 81

v “Multiple open instances of an iterator in an SQLJ application” on page 83

v “Calling stored procedures in an SQLJ application” on page 83

v “Handling SQL errors in an SQLJ application” on page 84

v “Handling SQL warnings in an SQLJ application” on page 85

Basic steps in writing an SQLJ application

Writing a SQLJ application has much in common with writing an SQL application

in any other language: In general, you need to do the following things:

v Import the Java™ packages that contain SQLJ and JDBC methods.

v Declare variables for sending data to or retrieving data from DB2® tables.

v Connect to a data source.

v Execute SQL statements.

v Handle SQL errors and warnings.

v Disconnect from the data source.

Although the tasks that you need to perform are similar to those in other

languages, the way that you execute those tasks, and the order in which you

execute those tasks, is somewhat different.

Figure 33 on page 62 is a simple program that demonstrates each task.

© Copyright IBM Corp. 1998, 2006 61

import sqlj.runtime.*; �1�

import java.sql.*;

#sql context EzSqljCtx; �3a�

#sql iterator EzSqljNameIter (String LASTNAME); �4a�

public class EzSqlj {

 public static void main(String args[])

 throws SQLException

 {

 EzSqljCtx ctx = null;

 String URLprefix = "jdbc:db2:";

 String url;

 url = new String(URLprefix + args[0]);

 // Location name is an input parameter

 String hvmgr="000010"; �2�

 String hvdeptno="A00";

 try { �3b�

 Class.forName("com.ibm.db2.jcc.DB2Driver");

 } catch (Exception e)

 {

 throw new SQLException("Error in EzSqlj: Could not load the driver");

 }

 try

 {

 System.out.println("About to connect using url: " + url);

 Connection con0 = DriverManager.getConnection(url); �3c�

 // Create a JDBC Connection

 con0.setAutoCommit(false); // set autocommit OFF

 ctx = new EzSqljCtx(con0); �3d�

 try

 {

 EzSqljNameIter iter;

 int count=0;

 #sql [ctx] iter =

 {SELECT LASTNAME FROM EMPLOYEE}; �4b�

 // Create result table of the SELECT

 while (iter.next()) { �4c�

 System.out.println(iter.LASTNAME()); // Retrieve rows from result table

 count++;

 }

 System.out.println("Retrieved " + count + " rows of data");

 }

Figure 33. Simple SQLJ application (Part 1 of 2)

62 Application Programming Guide and Reference for Java™

Notes to Figure 33 on page 62:

 �1� These statements import the java.sql package, which contains the JDBC core

API, and the sqlj.runtime package, which contains the SQLJ API. For

information on other packages or classes that you might need to access, see

“Java packages for SQLJ support” on page 64.

�2� String variables hvmgr and hvdeptno are host identifiers, which are equivalent

to DB2 host variables. See “Variables in SQLJ applications” on page 64 for more

information.

�3a�, �3b�,

�3c�, and

�3d�

These statements demonstrate how to connect to a data source using one of the

three available techniques. See “Connecting to a data source using SQLJ” on

page 66 for more details.

 catch(SQLException e) �5�

 {

 System.out.println ("**** SELECT SQLException...");

 while(e!=null) {

 System.out.println ("Error msg: " + e.getMessage());

 System.out.println ("SQLSTATE: " + e.getSQLState());

 System.out.println ("Error code: " + e.getErrorCode());

 e = e.getNextException(); // Check for chained exceptions

 }

 }

 catch(Exception e)

 {

 System.out.println("**** NON-SQL exception = " + e);

 e.printStackTrace();

 }

 try

 {

 #sql [ctx] �4d�

 {UPDATE DEPARTMENT SET MGRNO=:hvmgr

 WHERE DEPTNO=:hvdeptno};

 // Update data for one department �6�

 #sql [ctx] {COMMIT}; // Commit the update

 }

 catch(SQLException e)

 {

 System.out.println ("**** UPDATE SQLException...");

 System.out.println ("Error msg: " + e.getMessage() + ". SQLSTATE=" +

 e.getSQLState() + " Error code=" + e.getErrorCode());

 e.printStackTrace();

 }

 catch(Exception e)

 {

 System.out.println("**** NON-SQL exception = " + e);

 e.printStackTrace();

 }

 iter.close(); // Close the iterator

 ctx.close(); �7�

 }

 catch(SQLException e)

 {

 System.out.println ("**** SQLException ...");

 System.out.println ("Error msg: " + e.getMessage() + ". SQLSTATE=" +

 e.getSQLState() + " Error code=" + e.getErrorCode());

 e.printStackTrace();

 }

 catch(Exception e)

 {

 System.out.println ("**** NON-SQL exception = " + e);

 e.printStackTrace();

 }

}

Figure 33. Simple SQLJ application (Part 2 of 2)

Chapter 3. SQLJ application programming 63

�4a� ,

�4b�, �4c�,

and �4d�

These statements demonstrate how to execute SQL statements in SQLJ.

Statement 4a demonstrates the SQLJ equivalent of declaring an SQL cursor.

Statements 4b and 4c show one way of doing the SQLJ equivalent of executing

SQL FETCHes. Statement 4d shows how to do the SQLJ equivalent of

performing an SQL UPDATE. For more information, see “SQL statements in an

SQLJ application” on page 73.

�5� This try/catch block demonstrates the use of the SQLException class for SQL

error handling. For more information on handling SQL errors, see “Handling

SQL errors in an SQLJ application” on page 84. For more information on

handling SQL warnings, see “Handling SQL warnings in an SQLJ application”

on page 85.

�6� This is an example of a comment. For rules on including comments in SQLJ

programs, see “Comments in an SQLJ application” on page 66.

�7� This statement closes the connection to the data source. See “Closing the

connection to a data source in an SQLJ application” on page 73.

Java packages for SQLJ support

Before you can execute SQLJ statements or invoke JDBC methods in your SQLJ

program, you need to be able to access all or parts of various Java™ packages that

contain support for those statements. You can do that either by importing the

packages or specific classes, or by using fully-qualified class names. You might

need the following packages or classes for your SQLJ program:

sqlj.runtime

Contains the SQLJ run-time API.

java.sql

Contains the core JDBC API.

com.ibm.db2.jcc

Contains the DB2®-specific implementation of JDBC and SQLJ.

COM.ibm.db2os390.sqlj.jdbc

Contains classes and interfaces that are specific to the JDBC/SQLJ Driver

for OS/390.

javax.naming

Contains classes and interfaces for Java Naming and Directory Interface

(JNDI), which is often used for implementing a DataSource.

javax.sql

Contains JDBC 2.0 standard extensions.

Variables in SQLJ applications

In DB2® programs in other languages, you use host variables to pass data between

the application program and DB2. In SQLJ programs, you use host expressions. A

host expression can be a simple Java™ identifier, or it can be a complex expression.

Every host expression must start with a colon when it is used in an SQL statement.

Host expressions are case sensitive.

For the JDBC/SQLJ 2.0 Driver for OS/390 and z/OS, a Java identifier in a host

expression can have any of the data types listed in the Java data type column of

“Java, JDBC, and SQL data types” on page 127, except for Blob or Clob. For the

DB2 Universal JDBC Driver, a Java identifier can have any of the data types listed

in the Java data type column of “Java, JDBC, and SQL data types” on page 127.

Data types that are specified in an iterator can be any of the types in the Java data

type column of “Java, JDBC, and SQL data types” on page 127.

64 Application Programming Guide and Reference for Java™

A complex expression is an array element or Java expression that evaluates to a

single value. A complex expression in an SQLJ clause must be surrounded by

parentheses.

The following examples demonstrate how to use host expressions.

Example: Declaring a Java identifier and using it in a SELECT statement:

In this example, the statement that begins with #sql has the same function as a

SELECT statement in other languages. This statement assigns the last name of the

employee with employee number 000010 to Java identifier empname.

String empname;

...

#sql [ctxt]

 {SELECT LASTNAME INTO :empname FROM EMPLOYEE WHERE EMPNO='000010'};

Example: Declaring a Java identifier and using it in a stored procedure call:

In this example, the statement that begins with #sql has the same function as an

SQL CALL statement in other languages. This statement uses Java identifier empno

as an input parameter to stored procedure A. The value IN, which precedes empno,

specifies that empno is an input parameter. The qualifier that indicates how the

parameter is used (IN, OUT, or INOUT) must match the corresponding value in

the parameter definition that you specified in the CREATE PROCEDURE statement

for the stored procedure.

String empno = "0000010";

...

#sql [ctxt] {CALL A (:IN empno)};

Example: Using a complex expression as a host identifier:

This example uses complex expression (((int)yearsEmployed++/5)*500) as a host

expression.

#sql [ctxt] {UPDATE EMPLOYEE

 SET BONUS=:(((int)yearsEmployed++/5)*500) WHERE EMPNO=:empID};

SQLJ performs the following actions when it processes a complex host expression:

v Evaluates the host expression from left to right before assigning its value to DB2.

v Evaluates side effects, such as operations with postfix operators, according to

normal Java rules. All host expressions are fully evaluated before any of their

values are passed to DB2.

v Uses Java rules for rounding and truncation.

Therefore, if the value of yearsEmployed is 6 before the UPDATE statement is

executed, the value that is assigned to column BONUS by the UPDATE statement

is ((int)6/5)*500, or 500. After 500 is assigned to BONUS, the value of

yearsEmployed is incremented.

Restrictions on variable names: Two strings have special meanings in SQLJ

programs. Observe the following restrictions when you use these strings in your

SQLJ programs:

v The string __sJT_ is a reserved prefix for variable names that are generated by

SQLJ. Do not begin the following types of names with __sJT_:

– Host expression names

– Java variable names that are declared in blocks that include executable SQL

statements

Chapter 3. SQLJ application programming 65

|
|

– Names of parameters for methods that contain executable SQL statements

– Names of fields in classes that contain executable SQL statements, or in

classes with subclasses or enclosed classes that contain executable SQL

statements
v The string _SJ is a reserved suffix for resource files and classes that are

generated by SQLJ. Avoid using the string _SJ in class names and input source

file names.

Comments in an SQLJ application

To document your program, you need to include comments. To do that, use Java™

comments. Java comments are denoted by /* */ or //. You can include Java

comments outside SQLJ clauses, wherever the Java language permits them. Within

an SQLJ clause, you can use Java comments only within host expressions.

Connecting to a data source using SQLJ

In an SQLJ application, as in any other DB2® application, you must be connected

to a database server before you can execute SQL statements. In SQLJ, as in JDBC, a

database server is called a data source.

You can use one of the following techniques to connect to a data source.

Connection technique 1: This technique uses the JDBC DriverManager as the

underlying means for creating the connection. Use it with any level of the JDBC

driver.

1. Execute an SQLJ connection declaration clause.

Doing this generates a connection context class. The simplest form of the

connection declaration clause is:

#sql context context-class-name;

The name of the generated connection context class is context-class-name.

2. Load a JDBC driver by invoking the Class.forName method:

v For the DB2 Universal JDBC Driver, invoke Class.forName this way:

Class.forName("com.ibm.db2.jcc.DB2Driver");

v For the JDBC/SQLJ Driver for OS/390 and z/OS, invoke Class.forName this

way:

Class.forName("COM.ibm.db2os390.sqlj.jdbc.DB2SQLJDriver");

3. Invoke the constructor for the connection context class that you created in step

1.

Doing this creates a connection context object that you specify in each SQL

statement that you execute at the associated data source. The constructor

invocation statement needs to be in one of the following forms:

connection-context-class connection-context-object=

 new connection-context-class(String url, boolean autocommit);

connection-context-class connection-context-object=

 new connection-context-class(String url, String user,

 String password, boolean autocommit);

connection-context-class connection-context-object=

 new connection-context-class(String url, Properties info,

 boolean autocommit);

The meanings of the parameters are:

url A string that specifies the location name that is associated with the data

source. That argument has one of the forms that are specified in

66 Application Programming Guide and Reference for Java™

“Connecting to a data source using the DriverManager interface with the

DB2 Universal JDBC Driver” on page 10 or “Connecting to a data source

using the DriverManager interface with a JDBC/SQLJ Driver for OS/390

and z/OS” on page 54. The form depends on which JDBC driver you are

using.

user and password

Specify a user ID and password for connection to the data source, if the

data source to which you are connecting requires them.

 If the data source is a DB2 UDB for OS/390® or z/OS® system, and you do

not specify these parameters, DB2 uses the external security environment,

such as the RACF® security environment, that was previously established

for the user. For a CICS® connection, you cannot specify a user ID or

password.

info

Specifies an object of type java.util.Properties that contains a set of

driver properties for the connection. For the JDBC/SQLJ driver for z/OS,

you should specify only the user and password properties. For the DB2

Universal JDBC Driver, you can specify any of the properties listed in

“Properties for the DB2 Universal JDBC Driver” on page 185.

autocommit

Specifies whether you want the database manager to issue a COMMIT after

every statement. Possible values are true or false. If you specify false,

you need to do explicit commit operations.

The following code uses connection technique 1 to create a connection to location

NEWYORK. The connection requires a user ID and password, and does not require

autocommit. The numbers to the right of selected statements correspond to the

previously-described steps.

 Connection technique 2: This technique uses the JDBC DriverManager interface for

creating the connection. Use it with any level of the JDBC driver.

1. Execute an SQLJ connection declaration clause.

This is the same as step 1 on page 66 in connection technique 1.

2. Load the driver.

This is the same as step 2 on page 66 in connection technique 1.

#sql context Ctx; // Create connection context class Ctx �1�

String userid="dbadm"; // Declare variables for user ID and password

String password="dbadm";

String empname; // Declare a host variable

...

try { // Load the JDBC driver

 Class.forName("com.ibm.db2.jcc.DB2Driver"); �2�

}

catch (ClassNotFoundException e) {

 e.printStackTrace();

}

Ctx myConnCtx= �3�

 new Ctx("jdbc:db2://sysmvs1.stl.ibm.com:5021/NEWYORK",

 userid,password,false); // Create connection context object myConnCtx

 // for the connection to NEWYORK

#sql [myConnCtx] {SELECT LASTNAME INTO :empname FROM EMPLOYEE

 WHERE EMPNO='000010'};

 // Use myConnCtx for executing an SQL statement

Figure 34. Using connection technique 1 to connect to a data source

Chapter 3. SQLJ application programming 67

3. Invoke the JDBC DriverManager.getConnection method.

Doing this creates a JDBC connection object for the connection to the data

source. You can use any of the forms of getConnection that are specified in

“Connecting to a data source using the DriverManager interface with the DB2

Universal JDBC Driver” on page 10.

The meanings of the url, user, and password parameters are the same as the

meanings of the parameters in step 3 on page 66 of connection technique 1.

4. Invoke the constructor for the connection context class that you created in step

1 on page 67.

Doing this creates a connection context object that you specify in each SQL

statement that you execute at the associated data source. The constructor

invocation statement needs to be in the following form:

connection-context-class connection-context-object=

 new connection-context-class(Connection JDBC-connection-object);

The JDBC-connection-object parameter is the Connection object that you created

in step 3.

The following code uses connection technique 2 to create a connection to location

NEWYORK. The connection requires a user ID and password, and does not require

autocommit. The numbers to the right of selected statements correspond to the

previously-described steps.

Connection technique 3: This technique uses the JDBC DataSource interface for

creating the connection. Use this technique only if your JDBC driver is a JDBC 2.0

driver.

1. Execute an SQLJ connection declaration clause.

This is the same as step 1 on page 66 in connection technique 1.

2. If your system administrator created a DataSource object in a different program:

a. Obtain the logical name of the data source to which you need to connect.

b. Create a context to use in the next step.

#sql context Ctx; // Create connection context class Ctx �1�

String userid="dbadm"; // Declare variables for user ID and password

String password="dbadm";

String empname; // Declare a host variable

...

try { // Load the JDBC driver

 Class.forName("com.ibm.db2.jcc.DB2Driver"); �2�

}

catch (ClassNotFoundException e) {

 e.printStackTrace();

}

Connection jdbccon= �3�

 DriverManager.getConnection("jdbc:db2://sysmvs1.stl.ibm.com:5021/NEWYORK",

 userid,password);

 // Create JDBC connection object jdbccon

jdbccon.setAutoCommit(false); // Do not autocommit �4�

Ctx myConnCtx=new Ctx(jdbccon); �5�

 // Create connection context object myConnCtx

 // for the connection to NEWYORK

#sql [myConnCtx] {SELECT LASTNAME INTO :empname FROM EMPLOYEE

 WHERE EMPNO='000010'};

 // Use myConnCtx for executing an SQL statement

Figure 35. Using connection technique 2 to connect to a data source

68 Application Programming Guide and Reference for Java™

c. In your application program, use the Java™ Naming and Directory Interface

(JNDI) to get the DataSource object that is associated with the logical data

source name.

Otherwise, create a DataSource object and assign properties to it, as shown in

″Creating and using a DataSource object in the same application″ in

“Connecting to a data source using the DataSource interface” on page 12.

3. Invoke the JDBC DataSource.getConnection method.

Doing this creates a JDBC connection object for the connection to the data

source. You can use one of the following forms of getConnection:

getConnection();

getConnection(user, password);

The meanings of user and password parameters are the same as the meanings of

the parameters in step 3 on page 66 of connection technique 1.

4. If the default autocommit mode is not appropriate, invoke the JDBC

Connection.setAutoCommit method.

Doing this indicates whether you want the database manager to issue a

COMMIT after every statement. The form of this method is:

setAutoCommit(boolean autocommit);

For environments other than the environments for CICS, stored procedures, and

user-defined functions, the default autocommit mode for a JDBC connection is

true. To disable autocommit, invoke setAutoCommit(false).

5. Invoke the constructor for the connection context class that you created in step

1 on page 68.

Doing this creates a connection context object that you specify in each SQL

statement that you execute at the associated data source. The constructor

invocation statement needs to be in the following form:

connection-context-class connection-context-object=

 new connection-context-class(Connection JDBC-connection-object);

The JDBC-connection-object parameter is the Connection object that you created

in step 3.

The following code uses connection technique 3 to create a connection to a location

with logical name jdbc/sampledb. The numbers to the right of selected statements

correspond to the previously-described steps.

import java.sql.*;

import javax.naming.*;

import javax.sql.*;

...

#sql context CtxSqlj; // Create connection context class CtxSqlj �1�

Context ctx=new InitialContext(); �2b�

DataSource ds=(DataSource)ctx.lookup("jdbc/sampledb"); �2c�

Connection con=ds.getConnection(); �3�

String empname; // Declare a host variable

...

con.setAutoCommit(false); // Do not autocommit �4�

CtxSqlj myConnCtx=new CtxSqlj(con); �5�

 // Create connection context object myConnCtx

#sql [myConnCtx] {SELECT LASTNAME INTO :empname FROM EMPLOYEE

 WHERE EMPNO='000010'};

 // Use myConnCtx for executing an SQL statement

Figure 36. Using connection technique 3 to connect to a data source

Chapter 3. SQLJ application programming 69

Connection technique 4 (DB2 Universal JDBC Driver only): This technique uses the

JDBC DataSource interface for creating the connection. This technique requires that

the DataSource is registered with JNDI.

1. From your system administrator, obtain the logical name of the data source to

which you need to connect.

2. Execute an SQLJ connection declaration clause.

For this type of connection, the connection declaration clause needs to be of

this form:

#sql public static context context-class-name

 with (dataSource="logical-name");

The connection context must be declared as public and static. logical-name is the

data source name that you obtained in step 1.

3. Invoke the constructor for the connection context class that you created in step

2.

Doing this creates a connection context object that you specify in each SQL

statement that you execute at the associated data source. The constructor

invocation statement needs to be in one of the following forms:

connection-context-class connection-context-object=

 new connection-context-class();

connection-context-class connection-context-object=

 new connection-context-class (String user,

 String password);

The meanings of the user and password parameters are the same as the

meanings of the parameters in step 3 on page 66 of connection technique 1.

The following code uses connection technique 4 to create a connection to a location

with logical name jdbc/sampledb. The connection requires a user ID and password.

Connection technique 5: This technique uses a previously created connection to

connect to the data source. In general, one program declares a connection context

class, creates connection contexts, and passes them as parameters to other

programs. A program that uses the connection context invokes a constructor with

the passed connection context object as its argument.

Example: Program CtxGen.sqlj declares connection context Ctx and creates instance

oldCtx:

#sql context Ctx;

...

// Create connection context object oldCtx

#sql public static context Ctx

 with (dataSource="jdbc/sampledb"); �2�

 // Create connection context class Ctx

String userid="dbadm"; // Declare variables for user ID and password

String password="dbadm";

String empname; // Declare a host variable

...

Ctx myConnCtx=new Ctx(userid, password); �3�

 // Create connection context object myConnCtx

 // for the connection to jdbc/sampledb

#sql [myConnCtx] {SELECT LASTNAME INTO :empname FROM EMPLOYEE

 WHERE EMPNO='000010'};

 // Use myConnCtx for executing an SQL statement

Figure 37. Using connection technique 4 to connect to a data source

70 Application Programming Guide and Reference for Java™

#
#
#
#
#

Program test.sqlj receives oldCtx as a parameter and uses oldCtx as the argument

of its connection context constructor:

void useContext(sqlj.runtime.ConnectionContext oldCtx)

 // oldCtx was created in CtxGen.sqlj

{

 Ctx myConnCtx=

 new Ctx(oldCtx); // Create connection context object myConnCtx

 // from oldCtx

 #sql [myConnCtx] {SELECT LASTNAME INTO :empname FROM EMPLOYEE

 WHERE EMPNO=’000010’};

 // Use myConnCtx for executing an SQL statement

...

}

Connection technique 6: This technique uses the default connection to connect to

the data source. You use the default connection by specifying your SQL statements

without a connection context object. When you use this technique, you do not need

to load a JDBC driver unless you explicitly use JDBC interfaces in your program.

For example:

#sql {SELECT LASTNAME INTO :empname FROM EMPLOYEE

 WHERE EMPNO='000010'}; // Use default connection for

 // executing an SQL statement

To create a default connection context, SQLJ does a JNDI lookup for

jdbc/defaultDataSource. If nothing is registered, a null context exception is issued

when SQLJ attempts to access the context.

In a stored procedure that runs on DB2 UDB in the OS/390 or z/OS environment,

or for a CICS or IMS application, when you use the default connection, DB2 uses

the implicit connection.

Setting the isolation level for an SQLJ transaction

To set the isolation level for a unit of work within an SQLJ program, use the SET

TRANSACTION ISOLATION LEVEL clause. Table 6 shows the values that you can

specify in the SET TRANSACTION ISOLATION LEVEL clause and their DB2®

equivalents.

 Table 6. Equivalent SQLJ and DB2 isolation levels

SET TRANSACTION value DB2 isolation level

SERIALIZABLE Repeatable read

REPEATABLE READ Read stability

READ COMMITTED Cursor stability

READ UNCOMMITTED Uncommitted read

The isolation level affects the underlying JDBC connection as well as the SQLJ

connection.

With the JDBC/SQLJ Driver for OS/390 and z/OS, you can change the isolation

level only at the beginning of a transaction.

Committing or rolling back SQLJ transactions

If you disable autocommit for an SQLJ connection, you need to perform explicit

commit or rollback operations. You do this using execution clauses that contain the

SQL COMMIT or ROLLBACK statements:

Chapter 3. SQLJ application programming 71

#sql [myConnCtx] {COMMIT};

#sql [myConnCtx] {ROLLBACK};

Savepoints in SQLJ applications

An SQL savepoint represents the state of data and schemas at a particular point in

time within a unit of work. SQL statements exist to set a savepoint, release a

savepoint, and restore data and schemas to the state that the savepoint represents.

Under the DB2 Universal JDBC Driver, you can include any form of the SQL

SAVEPOINT statement in your SQLJ program.

The following example demonstrates how to set a savepoint, roll back to the

savepoint, and release the savepoint.

#sql context Ctx; // Create connection context class Ctx

String empNumVar;

int shoeSizeVar;

...

try { // Load the JDBC driver

 Class.forName("com.ibm.db2.jcc.DB2Driver");

}

catch (ClassNotFoundException e) {

 e.printStackTrace();

}

Connection jdbccon=

 DriverManager.getConnection("jdbc:db2://sysmvs1.stl.ibm.com:5021/NEWYORK",

 userid,password);

 // Create JDBC connection object jdbccon

jdbccon.setAutoCommit(false); // Do not autocommit

Ctx ctxt=new Ctx(jdbccon);

 // Create connection context object myConnCtx

 // for the connection to NEWYORK

#sql [ctxt] {CREATE DISTINCT TYPE SHOESIZE AS INTEGER WITH COMPARISONS};

 // Create a distinct type

#sql [ctxt] {COMMIT};

 // Commit the create

#sql [ctxt]

 {CREATE TABLE EMP_SHOE (EMPNO CHAR(6), EMP_SHOE_SIZE SHOESIZE)};

 // Create table with distinct type

#sql [ctxt] {COMMIT};

 // Commit the create

#sql [ctxt]

 {INSERT INTO EMP_SHOE VALUES (’000010’, 6)};

 // Insert a row

#sql [ctxt]

 {SAVEPOINT SVPT1 ON ROLLBACK RETAIN CURSORS};

 // Create a savepoint

...

#sql [ctxt]

 {INSERT INTO EMP_SHOE VALUES (’000020’, 10)};

 // Insert another row

#sql [ctxt] {ROLLBACK TO SAVEPOINT SVPT1};

 // Roll back work to the point

 // after the first insert

...

#sql [ctxt] {RELEASE SAVEPOINT SVPT1};

 // Release the savepoint

ctx.close(); // Close the connection context

Figure 38. Setting, rolling back to, and releasing a savepoint in an SQLJ application

72 Application Programming Guide and Reference for Java™

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|
|

|
|
|

Closing the connection to a data source in an SQLJ

application

When you have finished with a connection to a data source, you need to close the

connection to the data source. Doing so releases the connection context object’s

DB2® and SQLJ resources immediately.

To close the connection to the data source, use the ConnectionContext.close()

method. This closes the connection context, as well as the connection to the data

source. For example:

...

ctx = new EzSqljctx(con0); // Create a connection context object

 // from JDBC connection con0

... // Perform various SQL operations

 EzSqljctx.close(); // Close the connection context and

 // connection to the data source

SQL statements in an SQLJ application

You execute SQL statements in a traditional SQL program to create tables, insert,

update, and delete data in tables, retrieve data from the tables, call stored

procedures, or commit or roll back transactions. In an SQLJ program, you also

execute these statements, within SQLJ executable clauses. An executable clause can

have one of the following general forms:

#sql [connection-context] {sql-statement};

#sql [connection-context,execution-context] {sql-statement};

#sql [execution-context] {sql-statement};

In an executable clause, you should always specify an explicit connection context,

with one exception: you do not specify an explicit connection context for a FETCH

statement. You include an execution context only for specific cases. See

“Controlling the execution of SQL statements in SQLJ” on page 95 for information

about when you need an execution context.

For complete information on SQLJ syntax, see Chapter 4, “JDBC and SQLJ

reference,” on page 107.

Creating and modifying DB2 objects in an SQLJ application

Use SQLJ executable clauses to do the following things:

v Execute data definition statements (CREATE, ALTER, DROP, GRANT, REVOKE)

v Execute INSERT, searched UPDATE, and searched DELETE statements

For example, the following executable statements demonstrate an INSERT, a

searched UPDATE, and a searched DELETE:

#sql [myConnCtx] {INSERT INTO DEPARTMENT VALUES

 ("X00","Operations 2","000030","E01",NULL)};

#sql [myConnCtx] {UPDATE DEPARTMENT

 SET MGRNO="000090" WHERE MGRNO="000030"};

#sql [myConnCtx] {DELETE FROM DEPARTMENT

 WHERE DEPTNO="X00"};

For information on positioned UPDATEs and DELETEs, see “Performing

positioned UPDATE and DELETE operations in an SQLJ application” on page 78.

Chapter 3. SQLJ application programming 73

How an SQLJ application retrieves data from DB2 tables

Just as in DB2® applications in other languages, if you want to retrieve a single

row from a DB2 table in an SQLJ application, you can write a SELECT INTO

statement with a WHERE clause that defines a result table that contains only that

row:

#sql [myConnCtx] {SELECT DEPTNO INTO :hvdeptno

 FROM DEPARTMENT WHERE DEPTNAME="OPERATIONS"};

However, most SELECT statements that you use create result tables that contain

many rows. In DB2 applications in other languages, you use a cursor to select the

individual rows from the result table. That cursor can be non-scrollable, which

means that when you use it to fetch rows, you move the cursor serially, from the

beginning of the result table to the end. Alternatively, the cursor can be scrollable,

which means that when you use it to fetch rows, you can move the cursor

forward, backward, or to any row in the result table.

The SQLJ equivalent of a cursor is a result set iterator. Like a cursor, a result set

iterator can be non-scrollable or scrollable. This topic discusses how to use

non-scrollable iterators. For information on using scrollable iterators, see “Using

scrollable iterators in an SQLJ application” on page 102.

A result set iterator is a Java™ object that you use to retrieve rows from a result

table. Unlike a cursor, a result set iterator can be passed as a parameter to a

method.

The basic steps in using a result set iterator are:

1. Declare the iterator, which results in an iterator class

2. Define an instance of the iterator class.

3. Assign the result table of a SELECT to an instance of the iterator.

4. Retrieve rows.

5. Close the iterator.

There are two types of iterators: positioned iterators and named iterators. Postitioned

iterators extend the interface sqlj.runtime.PositionedIterator. Positioned

iterators identify the columns of a result table by their position in the result table.

Named iterators extend the interface sqlj.runtime.NamedIterator. Named iterators

identify the columns of the result table by result table column names.

Using a named iterator in an SQLJ application

The steps in using a named iterator are:

1. Declare the iterator.

You declare any result set iterator using an iterator declaration clause. This causes

an iterator class to be created that has the same name as the iterator. For a

named iterator, the iterator declaration clause specifies the following

information:

v The name of the iterator

v A list of column names and Java™ data types

v Information for a Java class declaration, such as whether the iterator is

public or static

v A set of attributes, such as whether the iterator is holdable, or whether its

columns can be updated

When you declare a named iterator for a query, you specify names for each of

the iterator columns. Those names must match the names of columns in the

74 Application Programming Guide and Reference for Java™

result table for the query. An iterator column name and a result table column

name that differ only in case are considered to be matching names. The named

iterator class that results from the iterator declaration clause contains accessor

methods. There is one accessor method for each column of the iterator. Each

accessor method name is the same as the corresponding iterator column name.

You use the accessor methods to retrieve data from columns of the result table.

You need to specify Java data types in the iterators that closely match the

corresponding DB2® column data types. See “Java, JDBC, and SQL data types”

on page 127 for a list of the best mappings between Java data types and DB2

data types.

You can declare an iterator in a number of ways. However, because a Java class

underlies each iterator, you need to ensure that when you declare an iterator,

the underlying class obeys Java rules. For example, iterators that contain a

with-clause must be declared as public. Therefore, if an iterator needs to be

public, it can be declared only where a public class is allowed. The following

list describes some alternative methods of declaring an iterator:

v As public, in a source file by itself

This method lets you use the iterator declaration in other code modules, and

provides an iterator that works for all SQLJ applications. In addition, there

are no concerns about having other top-level classes or public classes in the

same source file.

v As a top-level class in a source file that contains other top-level class

definitions

Java allows only one public, top-level class in a code module. Therefore, if

you need to declare the iterator as public, such as when the iterator includes

a with-clause, no other classes in the code module can be declared as public.

v As a nested static class within another class

Using this alternative lets you combine the iterator declaration with other

class declarations in the same source file, declare the iterator and other

classes as public, and make the iterator class visible to other code modules or

packages. However, when you reference the iterator from outside the nesting

class, you must fully-qualify the iterator name with the name of the nesting

class.

v As an inner class within another class

When you declare an iterator in this way, you can instantiate it only within

an instance of the nesting class. However, you can declare the iterator and

other classes in the file as public.

You cannot cast a JDBC ResultSet to an iterator if the iterator is declared as

an inner class. This restriction does not apply to an iterator that is declared

as a static nested class. See “Using SQLJ and JDBC in the same application”

on page 86 for more information on casting a ResultSet to a iterator.
2. Create an instance of the iterator class.

You declare an object of the named iterator class to retrieve rows from a result

table.

3. Assign the result table of a SELECT to an instance of the iterator.

To assign the result table of a SELECT to an iterator, you use an SQLJ

assignment clause. The format of the assignment clause for a named iterator is:

#sql context-clause iterator-object={select-statement};

See “SQLJ assignment-clause” on page 140 and “SQLJ context-clause” on page

138 for more information.

4. Retrieve rows.

Chapter 3. SQLJ application programming 75

Do this by invoking accessor methods in a loop. Accessor methods have the

same names as the corresponding columns in the iterator, and have no

parameters. An accessor method returns the value from the corresponding

column of the current row in the result table. Use the NamedIterator.next()

method to move the cursor forward through the result table.

To test whether you have retrieved all rows, check the value that is returned

when you invoke the next method. next returns a boolean with a value of

false if there is no next row.

5. Close the iterator.

Use the NamedIterator.close method to do this.

The following code demonstrates how to declare and use a named iterator. The

numbers to the right of selected statements correspond to the previously-described

steps.

Using a positioned iterator in an SQLJ application

The steps in using a positioned iterator are:

1. Declare the iterator.

You declare any result set iterator using an iterator declaration clause. This causes

an iterator class to be created that has the same name and attributes as the

iterator. For a positioned iterator, the iterator declaration clause specifies the

following information:

v The name of the iterator

v A list of Java™ data types

v Information for a Java class declaration, such as whether the iterator is

public or static

v A set of attributes, such as whether the iterator is holdable, or whether its

columns can be updated

The data type declarations represent columns in the result table and are

referred to as columns of the result set iterator. The columns of the result set

iterator correspond to the columns of the result table, in left-to-right order. For

example, if an iterator declaration clause has two data type declarations, the

first data type declaration corresponds to the first column in the result table,

and the second data type declaration corresponds to the second column in the

result table.

#sql iterator ByName(String LastName, Date HireDate); �1�

 // Declare named iterator ByName

{

 ByName nameiter; // Declare object of ByName class �2�

 #sql [ctxt]

 nameiter={SELECT LASTNAME, HIREDATE FROM EMPLOYEE}; �3�

 // Assign the result table of the SELECT

 // to iterator object nameiter

 while (nameiter.next()) // Move the iterator through the result �4�

 // table and test whether all rows retrieved

 {

 System.out.println(nameiter.LastName() + " was hired on "

 + nameiter.HireDate()); // Use accessor methods LastName and

 // HireDate to retrieve column values

 }

 nameiter.close(); // Close the iterator �5�

}

Figure 39. Using a named iterator

76 Application Programming Guide and Reference for Java™

You need to specify Java data types in the iterators that closely match the

corresponding DB2® column data types. See“Java, JDBC, and SQL data types”

on page 127 for a list of the best mappings between Java data types and DB2

data types.

You can declare an iterator in a number of ways. However, because a Java class

underlies each iterator, you need to ensure that when you declare an iterator,

the underlying class obeys Java rules. For example, iterators that contain a

with-clause must be declared as public. Therefore, if an iterator needs to be

public, it can be declared only where a public class is allowed. The following

list describes some alternative methods of declaring an iterator:

v As public, in a source file by itself

This is the most versatile method of declaring an iterator. This method lets

you use the iterator declaration in other code modules, and provides an

iterator that works for all SQLJ applications. In addition, there are no

concerns about having other top-level classes or public classes in the same

source file.

v As a top-level class in a source file that contains other top-level class

definitions

Java allows only one public, top-level class in a code module. Therefore, if

you need to declare the iterator as public, such as when the iterator includes

a with-clause, no other classes in the code module can be declared as public.

v As a nested static class within another class

Using this alternative lets you combine the iterator declaration with other

class declarations in the same source file, declare the iterator and other

classes as public, and make the iterator class visible from other code modules

or packages. However, when you reference the iterator from outside the

nesting class, you must fully-qualify the iterator name with the name of the

nesting class.

v As an inner class within another class

When you declare an iterator in this way, you can instantiate it only within

an instance of the nesting class. However, you can declare the iterator and

other classes in the file as public.

You cannot cast a JDBC ResultSet to an iterator if the iterator is declared as

an inner class. This restriction does not apply to an iterator that is declared

as a static nested class. See “Using SQLJ and JDBC in the same application”

on page 86 for more information on casting a ResultSet to a iterator.
2. Create an instance of the iterator class.

You declare an object of the positioned iterator class to retrieve rows from a

result table.

3. Assign the result table of a SELECT to an instance of the iterator.

To assign the result table of a SELECT to an iterator, you use an SQLJ

assignment clause. The format of the assignment clause for a positioned iterator

is:

#sql context-clause iterator-object={select-statement};

4. Retrieve rows.

Do this by executing FETCH statements in executable clauses in a loop. The

FETCH statements looks the same as a FETCH statements in other languages.

To test whether you have retrieved all rows, invoke the

PositionedIterator.endFetch method after each FETCH. endFetch returns a

boolean with the value true if the FETCH failed because there are no rows to

retrieve.

Chapter 3. SQLJ application programming 77

5. Close the iterator.

Use the PositionedIterator.close method to do this.

The following code demonstrates how to declare and use a positioned iterator. The

numbers to the right of selected statements correspond to the previously-described

steps.

Performing positioned UPDATE and DELETE operations in an

SQLJ application

As in DB2® applications in other languages, performing positioned UPDATEs and

DELETEs is an extension of retrieving rows from a result table. The basic steps are:

1. Declare the iterator.

The iterator can be positioned or named. For positioned UPDATE or DELETE

operations, the iterator must be declared as updatable. To do this, the

declaration must include the following clauses:

implements sqlj.runtime.ForUpdate

This clause causes the generated iterator class to include methods for

using updatable iterators. This clause is required for programs with

positioned UPDATE or DELETE operations.

with (updateColumns=″column-list″)

This clause specifies a comma-separated list of the columns of the result

table that the iterator will update. This clause is optional.
You need to declare the iterator as public, so you need to follow the rules for

declaring and using public iterators in the same file or different files.

If you declare the iterator in a file by itself, any SQLJ source file that has

addressability to the iterator and imports the generated class can retrieve data

and execute positioned UPDATE or DELETE statements using the iterator. The

authorization ID under which a positioned UPDATE or DELETE statement

executes depends on whether the statement executes statically or dynamically.

If the statement executes statically, the authorization ID is the owner of the DB2

plan or package that includes the statement. If the statement executes

dynamically the authorization ID is determined by the DYNAMICRULES

behavior that is in effect. For the DB2 Universal JDBC Driver, the behavior is

always DYNAMICRULES BIND. See the discussion of authorization IDs and

dynamic SQL in DB2 SQL Reference for more information.

#sql iterator ByPos(String,Date); // Declare positioned iterator ByPos �1�

{

 ByPos positer; // Declare object of ByPos class �2�

 String name = null; // Declare host variables

 Date hrdate;

 #sql [ctxt] positer =

 {SELECT LASTNAME, HIREDATE FROM EMPLOYEE}; �3�

 // Assign the result table of the SELECT

 // to iterator object positer

 #sql {FETCH :positer INTO :name, :hrdate }; �4�

 // Retrieve the first row

 while (!positer.endFetch()) // Check whether the FETCH returned a row

 { System.out.println(name + " was hired in " +

 hrdate);

 #sql {FETCH :positer INTO :name, :hrdate };

 // Fetch the next row

 }

 positer.close(); // Close the iterator �5�

}

Figure 40. Using a positioned iterator

78 Application Programming Guide and Reference for Java™

2. Disable autocommit mode for the connection.

If autocommit mode is enabled, a COMMIT operation occurs every time the

positioned UPDATE statement executes, which causes the iterator to be

destroyed unless the iterator has the with (holdability=true) attribute.

Therefore, you need to turn autocommit off to prevent COMMIT operations

until you have finished using the iterator. If you want a COMMIT to occur

after every update operation, an alternative way to keep the iterator from being

destroyed after each COMMIT operation is to declare the iterator with

(holdability=true).

3. Create an instance of the iterator class.

This is the same step as for a non-updatable iterator.

4. Assign the result table of a SELECT to an instance of the iterator.

This is the same step as for a non-updatable iterator. The SELECT statement

must not include a FOR UPDATE clause.

5. Retrieve and update rows.

For a positioned iterator, do this by performing the following actions in a loop:

a. Execute a FETCH statement in an executable clause to obtain the current

row.

b. Test whether the iterator is pointing to a row of the result table by invoking

the PositionedIterator.endFetch method.

c. If the iterator is pointing to a row of the result table, execute an SQL

UPDATE... WHERE CURRENT OF :iterator-object statement in an executable

clause to update the columns in the current row. Execute an SQL DELETE...

WHERE CURRENT OF :iterator-object statement in an executable clause to

delete the current row.

For a named iterator, do this by performing the following actions in a loop:

a. Invoke the next method to move the iterator forward.

b. Test whether the iterator is pointing to a row of the result table by checking

whether next returns true.

c. Execute an SQL UPDATE... WHERE CURRENT OF iterator-object statement

in an executable clause to update the columns in the current row. Execute

an SQL DELETE... WHERE CURRENT OF iterator-object statement in an

executable clause to delete the current row.
6. Close the iterator.

Use the close method to do this.

The following code shows how to declare a positioned iterator and use it for

positioned UPDATEs. The numbers to the right of selected statements correspond

to the previously described steps.

First, in one file, declare positioned iterator UpdByPos, specifying that you want to

use the iterator to update column SALARY:

 Then, in another file, use UpdByPos for a positioned UPDATE, as shown in the

following code fragment:

import java.math.*; // Import this class for BigDecimal data type

#sql public iterator UpdByPos implements sqlj.runtime.ForUpdate �1�

 with(updateColumns="SALARY") (String, BigDecimal);

Figure 41. Declaring a positioned iterator for a positioned UPDATE

Chapter 3. SQLJ application programming 79

The following code shows how to declare a named iterator and use it for

positioned UPDATEs. The numbers to the right of selected statements correspond

to the previously described steps.

First, in one file, declare named iterator UpdByName, specifying that you want to use

the iterator to update column SALARY:

import sqlj.runtime.*; // Import files for SQLJ and JDBC APIs

import java.sql.*;

import java.math.*; // Import this class for BigDecimal data type

import UpdByPos; // Import the generated iterator class that

 // was created by the iterator declaration clause

 // for UpdByName in another file

#sql context HSCtx; // Create a connnection context class HSCtx

public static void main (String args[])

{

 try {

 Class.forName("com.ibm.db2.jcc.DB2Driver");

 }

 catch (ClassNotFoundException e) {

 e.printStackTrace();

 }

 Connection HSjdbccon=

 DriverManager.getConnection("jdbc:db2:SANJOSE");

 // Create a JDBC connection object

 HSjdbccon.setAutoCommit(false);

 // Set autocommit off so automatic commits �2�

 // do not destroy the cursor between updates

 HSCtx myConnCtx=new HSCtx(HSjdbccon);

 // Create a connection context object

 UpdByPos upditer; // Declare iterator object of UpdByPos class �3�

 String enum; // Declares host variable to receive EMPNO

 BigDecimal sal; // and SALARY column values

 #sql [myConnCtx]

 upditer = {SELECT EMPNO, SALARY FROM EMPLOYEE �4�

 WHERE WORKDEPT='D11'};

 // Assign result table to iterator object

 #sql {FETCH :upditer INTO :enum,:sal}; �5a�

 // Move cursor to next row

 while (!upditer.endFetch()) �5b�

 // Check if on a row

 {

 #sql [myConnCtx] {UPDATE EMPLOYEE SET SALARY=SALARY*1.05

 WHERE CURRENT OF :upditer}; �5c�

 // Perform positioned update

 System.out.println("Updating row for " + enum);

 #sql {FETCH :upditer INTO :enum,:sal};

 // Move cursor to next row

 }

 upditer.close(); // Close the iterator �6�

 #sql [myConnCtx] {COMMIT};

 // Commit the changes

 myConnCtx.close(); // Close the connection context

}

Figure 42. Performing a positioned UPDATE with a positioned iterator

import java.math.*; // Import this class for BigDecimal data type

#sql public iterator UpdByName implements sqlj.runtime.ForUpdate �1�

 with(updateColumns="SALARY") (String EmpNo, BigDecimal Salary);

Figure 43. Declaring a named iterator for a positioned UPDATE

80 Application Programming Guide and Reference for Java™

Then, in another file, use UpdByName for a positioned UPDATE, as shown in the

following code fragment:

Multiple open iterators for the same SQL statement in an

SQLJ application

If you are using the DB2 Universal JDBC Driver, and your application connects to

a DB2 UDB for z/OS® Version 8 server, or a DB2 UDB for Linux, UNIX®, and

Windows® server at the FixPak 4 level or later, you can have multiple concurrently

open iterators for a single SQL statement in an SQLJ application. With this

capability, you can perform one operation on a table using one iterator while you

perform a different operation on the same table using another iterator.

import sqlj.runtime.*; // Import files for SQLJ and JDBC APIs

import java.sql.*;

import java.math.*; // Import this class for BigDecimal data type

import UpdByName; // Import the generated iterator class that

 // was created by the iterator declaration clause

 // for UpdByName in another file

#sql context HSCtx; // Create a connnection context class HSCtx

public static void main (String args[])

{

 try {

 Class.forName("com.ibm.db2.jcc.DB2Driver");

 }

 catch (ClassNotFoundException e) {

 e.printStackTrace();

 }

 Connection HSjdbccon=

 DriverManager.getConnection("jdbc:db2:SANJOSE");

 // Create a JDBC connection object

 HSjdbccon.setAutoCommit(false);

 // Set autocommit off so automatic commits �2�

 // do not destroy the cursor between updates

 HSCtx myConnCtx=new HSCtx(HSjdbccon);

 // Create a connection context object

 UpdByName upditer; �3�

 // Declare iterator object of UpdByName class

 String enum; // Declare host variable to receive EmpNo

 // column values

 #sql [myConnCtx]

 upditer = {SELECT EMPNO, SALARY FROM EMPLOYEE �4�

 WHERE WORKDEPT='D11'};

 // Assign result table to iterator object

 while (upditer.next()) �5a, 5b�

 // Move cursor to next row and

 // check ifon a row

 {

 enum = upditer.EmpNo(); // Get employee number from current row

 #sql [myConnCtx]

 {UPDATE EMPLOYEE SET SALARY=SALARY*1.05

 WHERE CURRENT OF :upditer}; �5c�

 // Perform positioned update

 System.out.println("Updating row for " + enum);

 }

 upditer.close(); // Close the iterator �6�

 #sql [myConnCtx] {COMMIT};

 // Commit the changes

 myConnCtx.close(); // Close the connection context

}

Figure 44. Performing a positioned UPDATE with a named iterator

Chapter 3. SQLJ application programming 81

|

|

|
|
|
|
|
|

When you use concurrently open iterators in an application, you should close

iterators when you no longer need them to prevent excessive storage consumption

in the Java™ heap.

The following examples demonstrate how to perform the same operations on a

table without concurrently open iterators on a single SQL statement and with

concurrently open iterators on a single SQL statement. These examples use the

following iterator declaration:

import java.math.*;

#sql public iterator MultiIter(String EmpNo, BigDecimal Salary);

Without the capability for multiple, concurrently open iterators for a single SQL

statement, if you want to select employee and salary values for a specific employee

number, you need to define a different SQL statement for each employee number,

as shown in Figure 45.

 Figure 46 on page 83 demonstrates how you can perform the same operations

when you have the capability for multiple, concurrently open iterators for a single

SQL statement.

MultiIter iter1 = null; // Iterator instance for retrieving

 // data for first employee

String EmpNo1 = "000100"; // Employee number for first employee

#sql [ctx] iter2 =

 {SELECT EMPNO, SALARY FROM EMPLOYEE WHERE EMPNO = :EmpNo1};

 // Assign result table to first iterator

MultiIter iter2 = null; // Iterator instance for retrieving

 // data for second employee

String EmpNo2 = "000200"; // Employee number for second employee

#sql [ctx] iter2 =

 {SELECT EMPNO, SALARY FROM EMPLOYEE WHERE EMPNO = :EmpNo2};

 // Assign result table to second iterator

// Process with iter1

// Process with iter2

iter1.close(); // Close the iterators

iter2.close();

Figure 45. Example of concurrent table operations using iterators with different SQL

statements

82 Application Programming Guide and Reference for Java™

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|

|
|
|
|
|

|
|
|
|

Multiple open instances of an iterator in an SQLJ application

Multiple instances of an iterator can be open concurrently in a single SQLJ

application. One application for this ability is to open several instances of an

iterator that uses host expressions. Each instance can use a different set of host

expression values.

The following example shows an application with two concurrently open instances

of an iterator.

 As with any other iterator, you need to remember to close this iterator after the last

time you use it to prevent excessive storage consumption.

Calling stored procedures in an SQLJ application

To call a stored procedure, you use an executable clause that contains an SQL

CALL statement. You can execute the CALL statement with host identifier

parameters. You can execute the CALL statement with literal parameters only if the

DB2 server on which the CALL statement runs supports execution of the CALL

statement dynamically.

...

MultiIter iter1 = openIter("000100"); // Invoke openIter to assign the result table

 // (for employee 100) to the first iterator

MultiIter iter2 = openIter("000200"); // Invoke openIter to assign the result

 // table to the second iterator

 // iter1 stays open when iter2 is opened

// Process with iter1

// Process with iter2

...

iter1.close(); // Close the iterators

iter2.close();

...

public MultiIter openIter(String EmpNo)

 // Method to assign a result table

 // to an iterator instance

{

 MultiIter iter;

 #sql [ctxt] iter =

 {SELECT EMPNO, SALARY FROM EMPLOYEE WHERE EMPNO = :EmpNo};

 return iter; // Method returns an iterator instance

}

Figure 46. Example of concurrent table operations using iterators with the same SQL

statement

...

ResultSet myFunc(String empid) // Method to open an iterator and get a resultSet

{

 MyIter iter;

 #sql iter = {SELECT * FROM EMPLOYEE WHERE EMPNO = :empid};

 return iter.getResultSet();

}

// An application can call this method to get a resultSet for each

// employee ID. The application can process each resultSet separately.

...

ResultSet rs1 = myFunc("000100"); // Get employee record for employee ID 000100

...

ResultSet rs2 = myFunc("000200"); // Get employee record for employee ID 000200

Figure 47. Example of opening more than one instance of an iterator in a single application

Chapter 3. SQLJ application programming 83

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

|
|
|

|
|

#
#
#
#
#

The basic steps in calling a stored procedure are:

1. Assign values to input (IN or INOUT) parameters.

2. Call the stored procedure.

3. Process output (OUT or INOUT) parameters.

4. If the stored procedure returns multiple result sets, retrieve those result sets.

See “Retrieving multiple result sets from a stored procedure in an SQLJ

application” on page 95.

The following code illustrates calling a stored procedure that has three input

parameters and three output parameters. The numbers to the right of selected

statements correspond to the previously-described steps.

Handling SQL errors in an SQLJ application

SQLJ clauses use the JDBC class java.sql.SQLException for error handling. SQLJ

generates an SQLException under the following circumstances:

v When any SQL statement returns a negative SQL error code

v When a SELECT INTO SQL statement returns a +100 SQL error code

You can use the getErrorCode method to retrieve SQL error codes and the

getSQLState method to retrieve SQLSTATEs.

To handle SQL errors in your SQLJ application, import the java.sql.SQLException

class, and use the Java™ error handling try/catch blocks to modify program flow

when an SQL error occurs. For example:

try {

 #sql [ctxt] {SELECT LASTNAME INTO :empname

 FROM EMPLOYEE WHERE EMPNO='000010'};

}

catch(SQLException e) {

 System.out.println("Error code returned: " + e.getErrorCode());

}

For the JDBC/SQLJ driver for z/OS®, if your SQLJ or JDBC application runs only

on DB2® UDB for OS/390® or z/OS, you can retrieve the contents of the SQLCA

when an SQL statement generates an SQLWarning or SQLException. For information

String FirstName="TOM"; // Input parameters �1�

String LastName="NARISINST";

String Address="IBM";

int CustNo; // Output parameters

String Mark;

String MarkErrorText;

...

#sql [myConnCtx] {CALL ADD_CUSTOMER(:IN FirstName, �2�

 :IN LastName,

 :IN Address,

 :OUT CustNo,

 :OUT Mark,

 :OUT MarkErrorText)};

 // Call the stored procedure

System.out.println("Output parameters from ADD_CUSTOMER call: ");

System.out.println("Customer number for " + LastName + ": " + CustNo); �3�

System.out.println(Mark);

If (MarkErrorText != null)

 System.out.println(" Error messages:" + MarkErrorText);

Figure 48. Calling a stored procedure in an SQLJ application

84 Application Programming Guide and Reference for Java™

on writing code to retrieve the SQLCA with the JDBC/SQLJ driver for z/OS, see

“Handling an SQLException under the JDBC/SQLJ Driver for OS/390 and z/OS”

on page 55.

With the DB2 Universal JDBC Driver, you can retrieve the SQLCA. For information

on writing code to retrieve the SQLCA with the DB2 Universal JDBC Driver, see

“Handling an SQLException under the DB2 Universal JDBC Driver” on page 22.

Handling SQL warnings in an SQLJ application

Other than a +100 SQL error code on a SELECT INTO statement, DB2® warnings

do not throw SQLExceptions. To handle DB2 warnings, you need to give the

program access to the java.sql.SQLWarning class. If you want to retrieve

DB2-specific information about a warning, you also need to give the program

access to the com.ibm.db2.jcc.DB2Diagnosable interface and the

com.ibm.db2.jcc.DB2Sqlca class. To check for a DB2 warning, invoke the

getWarnings method after you execute an SQLJ clause. getWarnings returns the

first SQLWarning object that an SQL statement generates. Subsequent SQLWarning

objects are chained to the first one.

To retrieve DB2-specific information from the SQLWarning object with the DB2

Universal JDBC Driver, follow the instructions in “Handling an SQLException

under the DB2 Universal JDBC Driver” on page 22.

To retrieve DB2-specific information from the SQLWarning object with the

JDBC/SQLJ driver for z/OS®, follow the instructions in “Handling an

SQLException under the JDBC/SQLJ Driver for OS/390 and z/OS” on page 55.

Before you can execute getWarnings for an SQL clause, you need to set up an

execution context for that SQL clause. See “Controlling the execution of SQL

statements in SQLJ” on page 95 for information on how to set up an execution

context. The following example demonstrates how to retrieve an SQLWarning object

for an SQL clause with execution context execCtx:

ExecutionContext execCtx=myConnCtx.getExecutionContext();

 // Get default execution context from

 // connection context

SQLWarning sqlWarn;

...

#sql [myConnCtx,execCtx] {SELECT LASTNAME INTO :empname

 FROM EMPLOYEE WHERE EMPNO='000010'};

if ((sqlWarn = execCtx.getWarnings()) != null)

System.out.println("SQLWarning " + sqlWarn);

Advanced SQLJ application programming concepts

The following topics contain more advanced information about writing SQLJ

applications:

v “Using SQLJ and JDBC in the same application” on page 86

v “LOBs in SQLJ applications with the DB2 Universal JDBC Driver” on page 89

v “Java data types for retrieving or updating LOB column data in SQLJ

applications” on page 89

v “Using LOBs in SQLJ applications with the JDBC/SQLJ Driver for OS/390 and

z/OS” on page 91

v “ROWIDs in SQLJ with the DB2 Universal JDBC Driver” on page 92

v “Using graphic string constants in SQLJ applications” on page 93

v “Distinct types in SQLJ applications” on page 94

v “Controlling the execution of SQL statements in SQLJ” on page 95

Chapter 3. SQLJ application programming 85

v “Retrieving multiple result sets from a stored procedure in an SQLJ application”

on page 95

v “Making batch updates in SQLJ applications” on page 97

v “Iterators as passed variables for positioned UPDATE or DELETE operations in

an SQLJ application” on page 100

v “Using scrollable iterators in an SQLJ application” on page 102

Using SQLJ and JDBC in the same application

You can combine SQLJ clauses and JDBC calls in a single program. To do this

effectively, you need to be able to do the following things:

v Use a JDBC Connection to build an SQLJ ConnectionContext, or obtain a JDBC

Connection from an SQLJ ConnectionContext.

v Use an SQLJ iterator to retrieve data from a JDBC ResultSet or generate a JDBC

ResultSet from an SQLJ iterator.

Building an SQLJ ConnectionContext from a JDBC Connection: To do that:

1. Execute an SQLJ connection declaration clause to create a ConnectionContext

class.

2. Load the driver or obtain a DataSource instance.

3. Invoke the JDBC DriverManager.getConnection or DataSource.getConnection

method to obtain a JDBC Connection.

4. Invoke the ConnectionContext constructor with the Connection as its argument

to create the ConnectionContext object.

Obtaining a JDBC Connection from an SQLJ ConnectionContext: To do this,

1. Execute an SQLJ connection declaration clause to create a ConnectionContext

class.

2. Load the driver or obtain a DataSource instance.

3. Invoke the ConnectionContext constructor with the URL of the driver and any

other necessary parameters as its arguments to create the ConnectionContext

object.

4. Invoke the JDBC ConnectionContext.getConnection method to create the JDBC

Connection object.

See “Connecting to a data source using SQLJ” on page 66 for more information on

SQLJ connections.

Retrieving JDBC result sets using SQLJ iterators: Use the iterator conversion

statement to manipulate a JDBC result set as an SQLJ iterator. The general form of

an iterator conversion statement is:

#sql iterator={CAST :result-set};

Before you can successfully cast a result set to an iterator, the iterator must

conform to the following rules:

v The iterator must be declared as public.

v If the iterator is a positioned iterator, the number of columns in the result set

must match the number of columns in the iterator. In addition, the data type of

each column in the result set must match the data type of the corresponding

column in the iterator.

86 Application Programming Guide and Reference for Java™

v If the iterator is a named iterator, the name of each accessor method must match

the name of a column in the result set. In addition, the data type of the object

that an accessor method returns must match the data type of the corresponding

column in the result set.

The code in Figure 49 builds and executes a query using a JDBC call, executes an

iterator conversion statement to convert the JDBC result set to an SQLJ iterator,

and retrieves rows from the result table using the iterator.

 Notes to Figure 49:

 �1� This SQLJ clause creates the named iterator class ByName, which has accessor

methods LastName() and HireDate() that return the data from result table columns

LASTNAME and HIREDATE.

�2� This statement and the following two statements build and prepare a query for

dynamic execution using JDBC.

�3� This JDBC statement executes the SELECT statement and assigns the result table

to result set rs.

�4� This iterator conversion clause converts the JDBC ResultSet rs to SQLJ iterator

nameiter, and the following statements use nameiter to retrieve values from the

result table.

�5� The nameiter.close() method closes the SQLJ iterator and JDBC ResultSet rs.

Generating JDBC ResultSets from SQLJ iterators: Use the getResultSet method to

generate a JDBC ResultSet from an SQLJ iterator. Every SQLJ iterator has a

getResultSet method. After you convert an iterator to a result set, you need to fetch

rows using only the result set.

The code in Figure 50 on page 88 generates a positioned iterator for a query,

converts the iterator to a result set, and uses JDBC methods to fetch rows from the

table.

#sql public iterator ByName(String LastName, Date HireDate); �1�

public void HireDates(ConnectionContext connCtx, String whereClause)

{

 ByName nameiter; // Declare object of ByName class

 Connection conn=connCtx.getConnection();

 // Create JDBC connection

 Statement stmt = conn.createStatement(); �2�

 String query = "SELECT LASTNAME, HIREDATE FROM EMPLOYEE";

 query+=whereClause; // Build the query

 ResultSet rs = stmt.executeQuery(query); �3�

 #sql [connCtx] nameiter = {CAST :rs}; �4�

 while (nameiter.next())

 {

 System.out.println(nameiter.LastName() + " was hired on "

 + nameiter.HireDate());

 }

 nameiter.close(); �5�

 stmt.close();

}

Figure 49. Converting a JDBC result set to an SQLJ iterator

Chapter 3. SQLJ application programming 87

Notes to Figure 50:

 �1� This SQLJ clause executes the SELECT statement, constructs an iterator object that

contains the result table for the SELECT statement, and assigns the iterator object

to variable iter.

�2� The getResultSet() method converts iterator iter to ResultSet rs.

�3� The JDBC getString() and getDate() methods retrieve values from the ResultSet.

The next() method moves the cursor to the next row in the ResultSet.

�4� The rs.close() method closes the SQLJ iterator as well as the ResultSet.

Rules and restrictions for using JDBC ResultSets in SQLJ applications: When you

write SQLJ applications that include JDBC result sets, observe the following rules

and restrictions:

v Before you can access the columns of a remote table by name, through either a

named iterator or an iterator that is converted to a JDBC ResultSet object, the

DB2® DESCSTAT subsystem parameter must be set to YES. See “Setting DB2

subsystem parameters for SQLJ support” on page 280 for more information.

v You cannot cast a ResultSet to an SQLJ iterator if the ResultSet and the iterator

have different holdability attributes.

A JDBC ResultSet or an SQLJ iterator can remain open after a COMMIT

operation. For a JDBC ResultSet, this characteristic is controlled by the

JDBC/SQLJ Driver for OS/390 and z/OS run-time property DB2CURSORHOLD

or by the DB2 Universal JDBC Driver property resultSetHoldability. For an

SQLJ iterator, this characteristic is controlled by the with holdability parameter

of the iterator declaration. Casting a ResultSet that has holdability to an SQLJ

iterator that does not, or casting a ResultSet that does not have holdability to an

SQLJ iterator that does, is not supported.

v Close a generated ResultSet object or the underlying iterator at the end of the

program.

Closing the iterator object from which a ResultSet object is generated also closes

the ResultSet object. Closing the generated ResultSet object also closes the

iterator object. In general, it is best to close the object that is used last.

v For the DB2 Universal JDBC Driver, which supports scrollable iterators and

scrollable and updatable ResultSets, the following restrictions apply:

– Scrollable iterators have the same restrictions as their underlying JDBC

ResultSets. For example, because scrollable ResultSets do not support

INSERTs, scrollable iterators do not support INSERTs.

– You cannot cast a JDBC ResultSet that is not updatable to an SQLJ iterator

that is updatable.

#sql iterator EmpIter(String, java.sql.Date);

{

...

 EmpIter iter=null;

 #sql [connCtx] iter=

 {SELECT LASTNAME, HIREDATE FROM EMPLOYEE}; �1�

 ResultSet rs=iter.getResultSet(); �2�

 while (rs.next()) �3�

 { System.out.println(rs.getString(1) + " was hired in " +

 rs.getDate(2));

 }

 rs.close(); �4�

}

Figure 50. Converting an SQLJ iterator to a JDBC ResultSet

88 Application Programming Guide and Reference for Java™

LOBs in SQLJ applications with the DB2 Universal JDBC

Driver

With the DB2 Universal JDBC Driver, you can retrieve LOB data into Clob or Blob

host expressions or update CLOB, BLOB, or DBCLOB columns from Clob or Blob

host expressions. You can also declare iterators with Clob or Blob data types to

retrieve data from CLOB, BLOB, or DBCLOB columns.

Retrieving or updating LOB data: To retrieve data from a BLOB column, declare

an iterator that includes a data type of Blob or byte[]. To retrieve data from a

CLOB or DBCLOB column, declare an iterator in which the corresponding column

has a Clob data type.

To update data in a BLOB column, use a host expression with data type Blob. To

update data in a CLOB or DBCLOB column, use a host expression with data type

Clob.

LOB locator support: The DB2 Universal JDBC Driver can use LOB locators to

retrieve data. To cause JDBC to use LOB locators to retrieve data from LOB

columns, you need to set the fullyMaterializeLobData property to false.

Properties are discussed in “Properties for the DB2 Universal JDBC Driver” on

page 185. fullyMaterializeLobData has no effect on stored procedure output

parameters or LOBs that are fetched using scrollable cursors. You cannot call a

stored procedure that has LOB locator parameters. When you fetch from scrollable

cursors, JDBC always uses LOB locators to retrieve data from LOB columns.

As in any other language, a LOB locator in a Java application is associated with

only one DB2 subsystem. You cannot use a single LOB locator to move data

between two different DB2 subsystems. To move LOB data between two DB2

subsystems, you need to materialize the LOB data when you retrieve it from a

table in the first DB2 subsystem and then insert that data into the table in the

second DB2 subsystem.

Java data types for retrieving or updating LOB column data in

SQLJ applications

For Universal Driver type 2 connectivity to DB2® UDB for z/OS®, when the JDBC

driver processes a CALL statement, the driver cannot determine the parameter

data types.

When the deferPrepares property is set to true, and the DB2 Universal JDBC

Driver processes an uncustomized SQLJ statement that includes host expressions,

the driver might need to do extra processing to determine data types. This extra

processing can impact performance.

When the JDBC driver cannot immediately determine the data type of a parameter

that is used with a LOB column, you need to choose a parameter data type that is

compatible with the LOB data type.

 Input parameters for BLOB columns:

 For input parameters for BLOB columns, you can use either of the following

techniques:

v Use a java.sql.Blob input variable, which is an exact match for a BLOB column:

java.sql.Blob blobData;

#sql {CALL STORPROC(:IN blobData)};

Chapter 3. SQLJ application programming 89

|

|

|
|
|

|
|
|
|

|
|
|

|

|
|

|

|
|

Before you can use a java.sql.Blob input variable, you need to create a

java.sql.Blob object, and then populate that object. For example, if you are using

the DB2 Universal JDBC Driver, you can use the DB2-only method

com.ibm.db2.jcc.t2zos.DB2LobFactory.createBlob to create a java.sql.Blob

object and populate the object with byte[] data:

byte[] byteArray = {0, 1, 2, 3};

java.sql.Blob blobData =

 com.ibm.db2.jcc.t2zos.DB2LobFactory.createBlob(byteArray);

v Use an input parameter of type of sqlj.runtime.BinaryStream. A

sqlj.runtime.BinaryStream object is compatible with a BLOB data type. For this

call, you need to specify the exact length of the input data:

java.io.ByteArrayInputStream byteStream =

 new java.io.ByteArrayInputStream(byteData);

int numBytes = byteData.length;

sqlj.runtime.BinaryStream binStream =

 new sqlj.runtime.BinaryStream(byteStream, numBytes);

#sql {CALL STORPROC(:IN binStream)};

You cannot use this technique for input/output parameters.

 Output parameters for BLOB columns:

 For output or input/output parameters for BLOB columns, you can use the

following technique:

v Declare the output parameter or input/output variable with a java.sql.Blob data

type:

java.sql.Blob blobData = null;

#sql CALL STORPROC (:OUT blobData)};

java.sql.Blob blobData = null;

#sql CALL STORPROC (:INOUT blobData)};

 Input parameters for CLOB columns:

 For input parameters for CLOB columns, you can use one of the following

techniques:

v Use a java.sql.Clob input variable, which is an exact match for a CLOB column:

#sql CALL STORPROC(:IN clobData)};

Before you can use a java.sql.Clob input variable, you need to create a

java.sql.Clob object, and then populate that object. For example, if you are using

the DB2 Universal JDBC Driver, you can use the DB2-only method

com.ibm.db2.jcc.t2zos.DB2LobFactory.createClob to create a java.sql.Clob

object and populate the object with String data:

String stringVal = "Some Data";

java.sql.Clob clobData =

 com.ibm.db2.jcc.t2zos.DB2LobFactory.createClob(stringVal);

v Use one of the following types of stream input parameters:

– A sqlj.runtime.CharacterStream input parameter:

java.lang.String charData;

java.io.StringReader reader = new java.io.StringReader(charData);

sqlj.runtime.CharacterStream charStream =

 new sqlj.runtime.CharacterStream (reader, charData.length);

#sql {CALL STORPROC(:IN charStream)};

– A sqlj.runtime.UnicodeStream parameter, for Unicode UTF-16 data:

90 Application Programming Guide and Reference for Java™

|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|

|

|

|
|

|
|

|
|

|
|

|

|
|

|

|

|
|
|
|
|

|
|
|

|

|

|
|
|
|
|
|

byte[] charDataBytes = charData.getBytes("UnicodeBigUnmarked");

java.io.ByteArrayInputStream byteStream =

 new java.io.ByteArrayInputStream(charDataBytes);

sqlj.runtime.UnicodeStream uniStream =

 new sqlj.runtime.UnicodeStream(byteStream, charDataBytes.length);

#sql {CALL STORPROC(:IN uniStream)};

– A sqlj.runtime.AsciiStream parameter, for ASCII data:

byte[] charDataBytes = charData.getBytes("US-ASCII");

java.io.ByteArrayInputStream byteStream =

 new java.io.ByteArrayInputStream (charDataBytes);

sqlj.runtime.AsciiStream asciiStream =

 new sqlj.runtime.AsciiStream (byteStream, charDataBytes.length);

#sql {CALL STORPROC(:IN asciiStream)};

For these calls, you need to specify the exact length of the input data. You

cannot use this technique for input/output parameters.

v Use a java.lang.String input parameter:

java.lang.String charData;

#sql {CALL STORPROC(:IN charData)};

 Output parameters for CLOB columns:

 For output our input/output parameters for CLOB columns, you can use one of

the following techniques:

v Use a java.sql.Clob output variable, which is an exact match for a CLOB column:

java.sql.Clob clobData = null;

#sql CALL STORPROC(:OUT clobData)};

v Use a java.lang.String output variable:

java.lang.String charData = null;

#sql CALL STORPROC(:OUT charData)};

This technique should be used only if you know that the length of the retrieved

data is less than or equal to 32KB. Otherwise, the data is truncated.

 Output parameters for DBCLOB columns:

 DBCLOB output or input/output parameters for stored procedures are not

supported.

Using LOBs in SQLJ applications with the JDBC/SQLJ Driver

for OS/390 and z/OS

With the JDBC/SQLJ Driver for OS/390 and z/OS, you cannot retrieve data into

Clob or Blob host expressions. However, you can declare iterators with Clob or

Blob data types to retrieve data from CLOB, BLOB, or DBCLOB columns, and

retrieve the data into String host expressions. You can also use String host

expressions to store data in CLOB, BLOB, or DBCLOB columns. The JDBC/SQLJ

Driver for OS/390 and z/OS does not use LOB locators for processing data, so

when you retrieve data from a LOB column you get the entire contents of the LOB.

Retrieving data from LOB columns: To retrieve data from a BLOB column, declare

an iterator that includes a data type of Blob. To retrieve data from a CLOB or

DBCLOB column, declare an iterator in which the corresponding column has a

Clob data type. The following code fragment demonstrates how to retrieve data

from a CLOB column.

Chapter 3. SQLJ application programming 91

|
|
|
|
|
|

|

|
|
|
|
|
|

|
|

|

|
|

|

|
|

|

|
|

|

|
|

|
|

|

|
|

Updating data in LOB columns: Under the JDBC/SQLJ Driver for OS/390 and

z/OS, you cannot use host expressions with Blob or Clob data types to retrieve or

update LOB data in SQLJ programs. Therefore, to update data in LOB columns,

use String host expressions. The following code fragment demonstrates how to

insert data into a CLOB column.

 Using LOBs as stored procedure parameters: You cannot call a stored procedure

that has LOB or LOB locator parameters.

ROWIDs in SQLJ with the DB2 Universal JDBC Driver

DB2® UDB for z/OS® and DB2 UDB for iSeries™ support the ROWID data type for

a column in a DB2 table. A ROWID is a value that uniquely identifies a row in a

table.

If you use ROWIDs in SQLJ programs, you need to customize those programs.

The DB2 Universal JDBC Driver provides the DB2-only class

com.ibm.db2.jcc.DB2RowID that you can use in iterators and in CALL statement

parameters. For an iterator, you can also use the byte[] object type to retrieve

ROWID values.

#sql iterator ClobIter (int KEYCOL, Clob CLOBCOL);

 // Declare named iterator

public static void main (String args[])

{

...

 ClobIter iter1 = null; // Create iterator instance

 #sql [conn] iter1 = {SELECT KEYCOL, CLOBCOL from CLOBTABLE};

 while (iter1.next())

 {

 int key1 = iter1.KEYCOL();

 // Retrieve KEYCOL value

 Clob clob1 = iter1.CLOBCOL();

 // Retrieve CLOBCOL value

 String clobstring = clob1.getSubString((long)1,100);

 // Use JDBC getSubString method

 // to retrieve first 100 bytes of

 // CLOBCOL value

 System.out.println("KEYCOL is: " + key1);

 System.out.println("First 100 chars of CLOBCOL is: " + clobstring);

 }

Figure 51. Retrieving CLOB data in an SQLJ program under the JDBC/SQLJ Driver for

OS/390 and z/OS

public static void main (String args[])

{

...

 int keycol = 45;

 String clobstr = new String("somereallybigstring");

 // Declare object of class String

 // and assign value that is to

 // be passed to LOB column

 #sql [conn] {INSERT INTO CLOBTABLE

 (KEYCOL, CLOBCOL) // Insert value from String

 // host identifier into LOB column

 VALUES(:keycol, :clobstr)};

}

Figure 52. Inserting data into a CLOB column

92 Application Programming Guide and Reference for Java™

|

|
|
|

|

|
|
|
|

Figure 53 shows an example of an iterator that is used to select values from a

ROWID column:

 Figure 54 shows an example of calling a stored procedure that takes three ROWID

parameters: an IN parameter, an OUT parameter, and an INOUT parameter.

Using graphic string constants in SQLJ applications

In EBCDIC environments, graphic string constants in SQLJ applications have the

following form:

G’\uxxxx\uxxxx...\uxxxx’

#sql iterator PosIter(int,String,com.ibm.db2.jcc.DB2RowId);

 // Declare positioned iterator

 // for retrieving ITEM_ID (INTEGER),

 // ITEM_FORMAT (VARCHAR), and ITEM_ROWID (ROWID)

 // values from table ROWIDTAB

{

 PosIter positrowid; // Declare object of PosIter class

 com.ibm.db2.jcc.DB2RowId rowid = null;

 int id = 0;

 String i_fmt = null;

 // Declare host expressions

 #sql [ctxt] positrowid =

 {SELECT ITEM_ID, ITEM_FORMAT, ITEM_ROWID FROM ROWIDTAB

 WHERE ITEM_ID=3};

 // Assign the result table of the SELECT

 // to iterator object positrowid

 #sql {FETCH :positrowid INTO :id, :i_fmt, :rowid};

 // Retrieve the first row

 while (!positrowid.endFetch())

 // Check whether the FETCH returned a row

 {System.out.println("Item ID " + id + " Item format " +

 i_fmt + " Item ROWID ");

 printBytes(rowid.getBytes());

 // Use the DB2-only method getBytes to

 // convert the value to bytes for printing

 #sql {FETCH :positrowid INTO :id, :i_fmt, :rowid};

 // Retrieve the next row

 }

 positrowid.close(); // Close the iterator

}

Figure 53. Example of using an iterator to retrieve ROWID values

com.ibm.db2.jcc.DB2RowId in_rowid = rowid;

com.ibm.db2.jcc.DB2RowId out_rowid = null;

com.ibm.db2.jcc.DB2RowId inout_rowid = rowid;

 // Declare an input, output, and

 // input/output ROWID parameter

...

#sql [myConnCtx] {CALL SP_ROWID(:IN in_rowid,

 :OUT out_rowid,

 :INOUT inout_rowid)};

 // Call the stored procedure

System.out.println("Parameter values from SP_ROWID call: ");

System.out.println("Output parameter value ");

printBytes(out_rowid.getBytes());

 // Use the DB2-only method getBytes to

 // convert the value to bytes for printing

System.out.println("Input/output parameter value ");

printBytes(inout_rowid.getBytes());

Figure 54. Example of calling a stored procedure with a ROWID parameter

Chapter 3. SQLJ application programming 93

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

|

|
|

|

xxxx is the Unicode value in hexadecimal that corresponds to the desired EBCDIC

graphic character.

For example, an EBCDIC double-byte G has the hexadecimal value 42C7. The

corresponding Unicode hexadecimal value is FF27. Therefore, in a SQLJ executable

statement, you represent the graphic string constant for an EBCDIC double-byte G

as:

G’\uFF27’

The following executable statement demonstrates a searched UPDATE that

includes graphic string constants:

Distinct types in SQLJ applications

In DB2®, a distinct type is a user-defined data type that is internally represented as

a built-in SQL data type. You create a distinct type by executing the SQL statement

CREATE DISTINCT TYPE.

In an SQLJ program, you can create a distinct type using the CREATE DISTINCT

TYPE statement in an executable clause. You can also use CREATE TABLE in an

executable clause to create a table that includes a column of that type. When you

retrieve data from a column of that type, or update a column of that type, you use

Java™ identifiers with data types that correspond to the built-in types on which the

distinct types are based.

The following example creates a distinct type that is based on an INTEGER type,

creates a table with a column of that type, inserts a row into the table, and

retrieves the row from the table:

// GRAPHIC_TABLE has one VARGRAPHIC(10) column named VGCOL.

// At least one row contains the string "GRAPHIC" in double-byte

// EBCDIC characters. The Unicode equivalent of "GRAPHIC" is

// G’\uFF27\uFF32\uFF21\uFF30\uFF28\uFF29\uFF23’.

// Update "GRAPHIC" in all rows to "graphic" in double-byte

// EBCDIC characters. The Unicode equivalent of "graphic" is

// G’\uFF47\uFF52\uFF41\uFF50\uFF48\uFF49\uFF43’

#sql [myConnCtx] {UPDATE GRAPHIC_TABLE

 SET VGCOL=G’\uFF47\uFF52\uFF41\uFF50\uFF48\uFF49\uFF43’

 WHERE VGCOL=G’\uFF27\uFF32\uFF21\uFF30\uFF28\uFF29\uFF23’};

Figure 55. Using graphic string constants in an SQLJ application

94 Application Programming Guide and Reference for Java™

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|

|

|
|
|

Controlling the execution of SQL statements in SQLJ

You can use selected methods of the SQLJ ExecutionContext class to control or

monitor the execution of SQL statements.

To use ExecutionContext methods, follow these steps:

1. Acquire an execution context.

There are two ways to acquire an execution context:

v Acquire the default execution context from the connection context. For

example:

ExecutionContext execCtx = connCtx.getExecutionContext();

v Create a new execution context by invoking the constructor for

ExecutionContext. For example:

ExecutionContext execCtx=new ExecutionContext();

2. Associate the execution context with an SQL statement.

To do that, specify an execution context after the connection context in the

execution clause that contains the SQL statement. For example:

#sql [connCtx, execCtx] {DELETE FROM EMPLOYEE WHERE SALARY > 10000};

3. Invoke ExecutionContext methods.

Some ExecutionContext methods are applicable before the associated SQL

statement is executed, and some are applicable only after their associated SQL

statement is executed.

For example, you can use method getUpdateCount to count the number of rows

that are deleted by a DELETE statement after you execute the DELETE

statement:

#sql [connCtx, execCtx] {DELETE FROM EMPLOYEE WHERE SALARY > 10000};

System.out.println("Deleted " + execCtx.getUpdateCount() + " rows");

Retrieving multiple result sets from a stored procedure in an

SQLJ application

Some stored procedures return one or more result sets to the calling program. To

retrieve the rows from those result sets, you execute these steps:

String empNumVar;

int shoeSizeVar;

...

#sql [myConnCtx] {CREATE DISTINCT TYPE SHOESIZE AS INTEGER WITH COMPARISONS};

 // Create distinct type

#sql [myConnCtx] {COMMIT}; // Commit the create

#sql [myConnCtx] {CREATE TABLE EMP_SHOE

 (EMPNO CHAR(6), EMP_SHOE_SIZE SHOESIZE)};

 // Create table using distinct type

#sql [myConnCtx] {COMMIT}; // Commit the create

#sql [myConnCtx] {INSERT INTO EMP_SHOE

 VALUES(’000010’,6)}; // Insert a row in the table

#sql [myConnCtx] {COMMIT}; // Commit the INSERT

#sql [myConnCtx] {SELECT EMPNO, EMP_SHOE_SIZE

 INTO :empNumVar, :shoeSizeVar

 FROM EMP_SHOE}; // Retrieve the row

System.out.println("Employee number: " + empNumVar +

 " Shoe size: " + shoeSizeVar);

Figure 56. Defining and using a distinct type

Chapter 3. SQLJ application programming 95

1. Acquire an execution context for retrieving the result set from the stored

procedure.

2. Associate the execution context with the CALL statement for the stored

procedure.

Do not use this execution context for any other purpose until you have

retrieved and processed the last result set.

3. For each result set:

a. Use the ExecutionContext method getNextResultSet to retrieve the result

set.

b. If you do not know the contents of the result set, use ResultSetMetaData

methods to retrieve this information.

c. Use an SQLJ result set iterator or JDBC ResultSet to retrieve the rows from

the result set.

Result sets are returned to the calling program in the same order that their cursors

are opened in the stored procedure. When there are no more result sets to retrieve,

getNextResultSet returns a null value.

getNextResultSet has two forms:

getNextResultSet();

getNextResultSet(int current);

When you invoke the first form of getNextResultSet, SQLJ closes the

currently-open result set and advances to the next result set. When you invoke the

second form of getNextResultSet, the value of current indicates what SQLJ does

with the currently-open result set before it advances to the next result set:

java.sql.Statement.CLOSE_CURRENT_RESULT

Specifies that the current ResultSet object is closed when the next ResultSet

object is returned.

java.sql.Statement.KEEP_CURRENT_RESULT

Specifies that the current ResultSet object stays open when the next ResultSet

object is returned.

java.sql.Statement.CLOSE_ALL_RESULTS

Specifies that all open ResultSet objects are closed when the next ResultSet

object is returned.

The second form of getNextResultSet requires JDK 1.4 or later.

The following code calls a stored procedure that returns multiple result sets. For

this example, it is assumed that the caller does not know the number of result sets

to be returned or the contents of those result sets. It is also assumed that

autoCommit is false. The numbers to the right of selected statements correspond to

the previously-described steps.

96 Application Programming Guide and Reference for Java™

|
|

Making batch updates in SQLJ applications

The DB2 Universal JDBC Driver supports batch updates in SQLJ. With batch

updates, instead of updating rows of a DB2® table one at a time, you can direct

SQLJ to execute a group of updates at the same time. You can include the

following types of statements in a batch update:

v Searched INSERT, UPDATE, or DELETE statements

v CREATE, ALTER, DROP, GRANT, or REVOKE statements

v CALL statements with input parameters only

Unlike JDBC, SQLJ allows heterogeneous batches that contain statements with

input parameters or host expressions. You can therefore combine any of the

following items in an SQLJ batch:

v Instances of the same statement

v Different statements

v Statements with different numbers of input parameters or host expressions

v Statements with different data types for input parameters or host expressions

v Statements with no input parameters or host expressions

The basic steps for creating, executing, and deleting a batch of statements are:

1. Disable AutoCommit for the connection.

2. Acquire an execution context.

All statements that execute in a batch must use this execution context.

3. Invoke the ExecutionContext.setBatching(true) method to create a batch.

Subsequent batchable statements that are associated with the execution context

that you created in step 2 are added to the batch for later execution.

If you want to batch sets of statements that are not batch compatible in parallel,

you need to create an execution context for each set of batch compatible

statements.

4. Include SQLJ executable clauses for SQL statements that you want to batch.

These clauses must include the execution context that you created in step 2.

If an SQLJ executable clause has input parameters or host expressions, you can

include the statement in the batch multiple times with different values for the

input parameters or host expressions.

ExecutionContext execCtx=myConnCtx.getExecutionContext(); �1�

#sql [myConnCtx, execCtx] {CALL MULTRSSP()}; �2�

 // MULTRSSP returns multiple result sets

ResultSet rs;

while ((rs = execCtx.getNextResultSet()) != null) �3a�

{

 ResultSetMetaData rsmeta=rs.getMetaData(); �3b�

 int numcols=rsmeta.getColumnCount();

 while (rs.next()) �3c�

 {

 for (int i=1; i<=numcols; i++)

 {

 String colval=rs.getString(i);

 System.out.println("Column " + i + "value is " + colval);

 }

 }

}

Figure 57. Retrieving result sets from a stored procedure

Chapter 3. SQLJ application programming 97

#
#
#

#

#

#

#

#

To determine whether a statement was added to an existing batch, was the first

statement in a new batch, or was executed inside or outside a batch, invoke the

ExecutionContext.getUpdateCount method. This method returns one of the

following values:

ExecutionContext.ADD_BATCH_COUNT

This is a constant that is returned if the statement was added to an existing

batch.

ExecutionContext.NEW_BATCH_COUNT

This is a constant that is returned if the statement was the first statement in

a new batch.

ExecutionContext.EXEC_BATCH_COUNT

This is a constant that is returned if the statement was part of a batch, and

the batch was executed.

Other integer

This value is the number of rows that were updated by the statement. This

value is returned if the statement was executed rather than added to a

batch.
5. Execute the batch explicitly or implicitly.

v Invoke the ExecutionContext.executeBatch method to execute the batch

explicitly.

executeBatch returns an integer array that contains the number of rows that

were updated by each statement in the batch. The order of the elements in

the array corresponds to the order in which you added statements to the

batch.

v Alternatively, a batch executes implicitly under the following circumstances:

– You include a batchable statement in your program that is not compatible

with statements that are already in the batch. In this case, SQLJ executes

the statements that are already in the batch and creates a new batch that

includes the incompatible statement. SQLJ also executes the statement that

is not compatible with the statements in the batch.

– You include a statement in your program that is not batchable. In this

case, SQLJ executes the statements that are already in the batch. SQLJ also

executes the statement that is not batchable.

– After you invoke the ExecutionContext.setBatchLimit(n) method, you

add a statement to the batch that brings the number of statements in the

batch to n or greater. n can have one of the following values:

ExecutionContext.UNLIMITED_BATCH

This constant indicates that implicit execution occurs only when SQLJ

encounters a statement that is batchable but incompatible, or not

batchable. Setting this value is the same as not invoking

setBatchLimit.

ExecutionContext.AUTO_BATCH

This constant indicates that implicit execution occurs when the

number of statements in the batch reaches a number that is set by

SQLJ.

Positive integer

When this number of statements have been added to the batch, SQLJ

executes the batch implicitly. However, the batch might be executed

before this many statements have been added if SQLJ encounters a

statement that is batchable but incompatible, or not batchable.

98 Application Programming Guide and Reference for Java™

To determine the number of rows that were updated by a batch that was

executed implicitly, invoke the ExecutionContext.getBatchUpdateCounts

method. getBatchUpdateCounts returns an integer array that contains the

number of rows that were updated by each statement in the batch. The order

of the elements in the array corresponds to the order in which you added

statements to the batch. Each array element can be one of the following

values:

-2 This value indicates that the SQL statement executed successfully, but the

number of rows that were updated could not be determined.

-3 This value indicates that the SQL statement failed.

Other integer

This value is the number of rows that were updated by the statement.
6. Optionally, when all statements have been added to the batch, disable batching.

Do this by invoking the ExecutionContext.setBatching(false) method. When

you disable batching, you can still execute the batch implicitly or explicitly, but

no more statements are added to the batch. Disabling batching is useful when a

batch already exists, and you want to execute a batch compatible statement,

rather than adding it to the batch.

If you want to clear a batch without executing it, invoke the

ExecutionContext.cancel method.

7. If batch execution was implicit, perform a final, explicit executeBatch to ensure

that all statements have been executed.

Example of a batch update: In the following code fragment, raises are given to all

managers by performing UPDATEs in a batch. The numbers to the right of selected

statements correspond to the previously-described steps.

Chapter 3. SQLJ application programming 99

When an error occurs during execution of a statement in a batch, the remaining

statements are executed, and a BatchUpdateException is thrown after all the

statements in the batch have executed. See “Making batch updates in JDBC

applications” on page 41 for information on how to process a

BatchUpdateException.

To obtain information about warnings, use the Statement.getWarnings method on

the object on which you ran the executeBatch method. You can then retrieve an

error description, SQLSTATE, and error code for each SQLWarning object.

When a batch is executed implicitly because the program contains a statement that

cannot be added to the batch, the batch is executed before the new statement is

processed. If an error occurs during execution of the batch, the statement that

caused the batch to execute does not execute.

Recommendation: Turn autocommit off when you do batch updates so that you

can control whether to commit changes to already-executed statements when an

error occurs during batch execution.

Iterators as passed variables for positioned UPDATE or

DELETE operations in an SQLJ application

SQLJ allows iterators to be passed between methods as variables. An iterator that

is used for a positioned UPDATE or DELETE statement can be identified only at

runtime. The same SQLJ positioned UPDATE or DELETE statement can be used

#sql iterator GetMgr(String); // Declare positioned iterator

{

 GetMgr deptiter; // Declare object of GetMgr class

 String mgrnum = null; // Declare host variable for manager number

 int raise = 400®; // Declare raise amount

 int currentSalary; // Declare current salary

 String url, username, password; // Declare url, user ID, password

 ...

 TestContext c1 = new TestContext (url, username, password, false); �1�

 ExecutionContext ec = new ExecutionContext(); �2�

 ec.setBatching(true); �3�

 #sql [c1] deptiter =

 {SELECT MGRNO FROM DEPARTMENT};

 // Assign the result table of the SELECT

 // to iterator object deptiter

 #sql {FETCH :deptiter INTO :mgrnum};

 // Retrieve the first manager number

 while (!deptiter.endFetch()) { // Check whether the FETCH returned a row

 #sql [c1]

 {SELECT SALARY INTO :currentSalary FROM EMPLOYEE

 WHERE EMPNO=:mgrnum};

 #sql [c1, ec] �4�

 {UPDATE EMPLOYEE SET SALARY=:(currentSalary+raise)

 WHERE EMPNO=:mgrnum};

 #sql {FETCH :deptiter INTO :mgrnum };

 // Fetch the next row

 }

 ec.executeBatch(); �5�

 ec.setBatching(false); �6�

 #sql [c1] {COMMIT};

 deptiter.close(); // Close the iterator

 ec.close(); // Close the execution context

 c1.close(); // Close the connection

}

Figure 58. Performing a batch update

100 Application Programming Guide and Reference for Java™

with different iterators at runtime. If you specify a value of YES for

-staticpositioned when you customize your SQLJ application as part of the

program preparation process, the SQLJ customizer prepares positioned UPDATE or

DELETE statements to execute statically. (See Chapter 6, “Preparing and running

JDBC and SQLJ programs,” on page 219 for more information on customization.)

In this case, the customizer must determine which iterators belong with which

positioned UPDATE or DELETE statements. The SQLJ customizer does this by

matching iterator data types to data types in the UPDATE or DELETE statements.

However, if there is not a unique mapping of tables in UPDATE or DELETE

statements to iterator classes, the SQLJ customizer cannot determine exactly which

iterators and UPDATE or DELETE statements go together. The SQLJ customizer

must arbitrarily pair iterators with UPDATE or DELETE statements, which can

sometimes result in SQL errors. The following code fragments illustrate this point.

In this example, only one iterator is defined. Two instances of that iterator are

defined, and each is associated with a different SELECT statement that retrieves

data from a different table. During customization and binding with

-staticpositioned YES, SQLJ creates two DECLARE CURSOR statements, one for

each SELECT statement, and attempts to bind an UPDATE statement for each

cursor. However, the bind process fails with SQLCODE -509 when UPDATE TABLE1

... WHERE CURRENT OF :iter is bound for the cursor for SELECT CHAR_COL2 FROM

TABLE2 because the table for the UPDATE does not match the table for the cursor.

You can avoid a bind time error for a program like the one in Figure 59 by

specifying the bind option SQLERROR(CONTINUE). However, this technique has

the drawback that it causes the DB2 database manager to build a package,

regardless of the SQL errors that are in the program. A better technique is to write

the program so that there is a one-to-one mapping between tables in positioned

UPDATE or DELETE statements and iterator classes. Figure 60 on page 102 shows

an example of how to do this.

#sql iterator GeneralIter implements sqlj.runtime.ForUpdate

 (String);

 public static void main (String args[])

 {

...

 GeneralIter iter1 = null;

 #sql [ctxt] iter1 = { SELECT CHAR_COL1 FROM TABLE1 };

 GeneralIter iter2 = null;

 #sql [ctxt] iter2 = { SELECT CHAR_COL2 FROM TABLE2 };

...

 doUpdate (iter1);

 }

 public static void doUpdate (GeneralIter iter)

 {

 #sql [ctxt] { UPDATE TABLE1 ... WHERE CURRENT OF :iter };

 }

Figure 59. Static positioned UPDATE that fails

Chapter 3. SQLJ application programming 101

#
#
#
#
#
#
#
#

With this method of coding, each iterator class is associated with only one table.

Therefore, the DB2 bind process can always associate the positioned UPDATE

statement with a valid iterator.

Using scrollable iterators in an SQLJ application

In addition to moving forward, one row at a time, through a result table, you

might want to move backward or go directly to a specific row. The DB2 Universal

JDBC Driver provides this capability.

An iterator in which you can move forward, backward, or to a specific row is

called a scrollable iterator. A scrollable iterator in SQLJ is equivalent to the result

table of a DB2® cursor that is declared as SCROLL.

Like a scrollable cursor, a scrollable iterator can be insensitive or sensitive. A

sensitive scrollable iterator can be static or dynamic. Insensitive means that changes

to the underlying table after the iterator is opened are not visible to the iterator.

Insensitive iterators are read-only. Sensitive means that changes that the iterator or

other processes make to the underlying table are visible to the iterator. Asensitive

means that if the cursor is a read-only cursor, it behaves as an insensitive cursor. If

it is not a read-only cursor, it behaves as a sensitive cursor.

If a scrollable iterator is static, the size of the result table and the order of the rows

in the result table do not change after the iterator is opened. This means that you

cannot insert into result tables, and if you delete a row of a result table, a delete

hole occurs. If you update a row of the result table so that the row no longer

qualifies for the result table, an update hole occurs. Fetching from a hole results in

an SQLException.

Important: Like static scrollable cursors in any other language, SQLJ static

scrollable iterators use declared temporary tables for their internal processing. This

#sql iterator Table2Iter(String);

#sql iterator Table1Iter(String);

 public static void main (String args[])

 {

...

 Table2Iter iter2 = null;

 #sql [ctxt] iter2 = { SELECT CHAR_COL2 FROM TABLE2 };

 Table1Iter iter1 = null;

 #sql [ctxt] iter1 = { SELECT CHAR_COL1 FROM TABLE1 };

...

 doUpdate(iter1);

 }

 public static void doUpdate (Table1Iter iter)

 {

 ...

 #sql [ctxt] { UPDATE TABLE1 ... WHERE CURRENT OF :iter };

 ...

 }

 public static void doUpdate (Table2Iter iter)

 {

 ...

 #sql [ctxt] { UPDATE TABLE2 ... WHERE CURRENT OF :iter };

 ...

 }

Figure 60. Static positioned UPDATE that succeeds

102 Application Programming Guide and Reference for Java™

means that before you can execute any applications that contain static scrollable

iterators, your database administrator needs to create a temporary database and

temporary table spaces for those declared temporary tables. See DB2 Installation

Guide for detailed information on creating the temporary database and temporary

table spaces.

If a scrollable iterator is dynamic, the size of the result table and the order of the

rows in the result table can change after the iterator is opened. Rows that are

inserted or deleted with INSERT and DELETE statements that are executed by the

same application process are immediately visible. Rows that are inserted or deleted

with INSERT and DELETE statements that are executed by other application

processes are visible after the changes are committed.

Important: DB2 UDB for Linux, UNIX and Windows servers do not support

dynamic scrollable cursors. You can use dynamic scrollable iterators in your SQLJ

applications only if those applications access data on DB2 UDB for z/OS servers,

at Version 8 or later.

To create and use a scrollable iterator, you need to follow these steps:

1. Specify an iterator declaration clause that includes the following clauses:

v implements sqlj.runtime.Scrollable

This indicates that the iterator is scrollable.

v with (sensitivity=INSENSITIVE|SENSITIVE|ASENSITIVE) or with

(sensitivity=SENSITIVE, dynamic=true|false)

sensitivity=INSENSITIVE|SENSITIVE|ASENSITIVE indicates whether update or

delete operations on the underlying table can be visible to the iterator. The

default sensitivity is INSENSITIVE.

dynamic=true|false indicates whether the size of the result table or the order

of the rows in the result table can change after the iterator is opened. The

default value of dynamic is false.

The iterator can be a named or positioned iterator. For example, the following

iterator declaration clause declares a positioned, sensitive, dynamic, scrollable

iterator:

#sql public iterator ByPos

 implements sqlj.runtime.Scrollable

 with (sensitivity=SENSITIVE, dynamic=true) (String);

The following iterator declaration clause declares a named, insensitive,

scrollable iterator:

#sql public iterator ByName

 implements sqlj.runtime.Scrollable

 with (sensitivity=INSENSITIVE) (String EmpNo);

2. Create an iterator object, which is an instance of your iterator class.

3. If you want to give the SQLJ runtime environment a hint about the initial fetch

direction, use the setFetchDirection(int direction) method. direction can be

FETCH_FORWARD or FETCH_REVERSE. If you do not invoke setFetchDirection, the

fetch direction is FETCH_FORWARD.

4. For each row that you want to access:

v For a named iterator, perform the following steps:

a. Position the cursor using one of the methods listed in Table 7 on page

104.

Chapter 3. SQLJ application programming 103

Table 7. sqlj.runtime.Scrollable methods for positioning a scrollable cursor

Method Positions the cursor

first() On the first row of the result table

last() On the last row of the result table

previous()1 On the previous row of the result table

next() On the next row of the result table

absolute(int n)2 If n>0, on row n of the result table. If n<0, and m is

the number of rows in the result table, on row m+n+1

of the result table.

relative(int n)3 If n>0, on the row that is n rows after the current row.

If n<0, on the row that is n rows before the current

row. If n=0, on the current row.

afterLast() After the last row in the result table

beforeFirst() Before the first row in the result table

Notes:

1. If the cursor is after the last row of the result table, this method positions the cursor on

the last row.

2. If the absolute value of n is greater than the number of rows in the result table, this

method positions the cursor after the last row if n is positive, or before the first row if n

is negative.

3. Suppose that m is the number of rows in the result table and x is the current row

number in the result table. If n>0 and x+n>m, the iterator is positioned after the last row.

If n<0 and x+n<1, the iterator is positioned before the first row.

b. If you need to know the current cursor position, use the getRow, isFirst,

isLast, isBeforeFirst, or isAfterLast method to obtain this information.

If you need to know the current fetch direction, invoke the

getFetchDirection method.

c. Use accessor methods to retrieve the current row of the result table.

d. If update or delete operations by the iterator or by other means are

visible in the result table, invoke the getWarnings method to check

whether the current row is a hole.
v For a positioned iterator, perform the following steps:

a. Use a FETCH statement with a fetch orientation clause to position the

iterator and retrieve the current row of the result table. Table 8 lists the

clauses that you can use to position the cursor.

 Table 8. FETCH clauses for positioning a scrollable cursor

Method Positions the cursor

FIRST On the first row of the result table

LAST On the last row of the result table

PRIOR1 On the previous row of the result table

NEXT On the next row of the result table

ABSOLUTE(n)2 If n>0, on row n of the result table. If n<0, and m is

the number of rows in the result table, on row m+n+1

of the result table.

RELATIVE(n)3 If n>0, on the row that is n rows after the current row.

If n<0, on the row that is n rows before the current

row. If n=0, on the current row.

104 Application Programming Guide and Reference for Java™

Table 8. FETCH clauses for positioning a scrollable cursor (continued)

Method Positions the cursor

AFTER4 After the last row in the result table

BEFORE4 Before the first row in the result table

Notes:

1. If the cursor is after the last row of the result table, this method positions the cursor on

the last row.

2. If the absolute value of n is greater than the number of rows in the result table, this

method positions the cursor after the last row if n is positive, or before the first row if n

is negative.

3. Suppose that m is the number of rows in the result table and x is the current row

number in the result table. If n>0 and x+n>m, the iterator is positioned after the last row.

If n<0 and x+n<1, the iterator is positioned before the first row.

4. Values are not assigned to host expressions.

b. If update or delete operations by the iterator or by other means are

visible in the result table, invoke the getWarnings method to check

whether the current row is a hole.
5. Invoke the close method to close the iterator.

For example, the following code demonstrates how to use a named iterator to

retrieve the employee number and last name from all rows from the employee

table in reverse order. The numbers to the right of selected statements correspond

to the previously-described steps.

#sql iterator ScrollIter implements sqlj.runtime.Scrollable �1�

 (String EmpNo, String LastName);

{

 ScrollIter scrliter; �2�

 #sql [ctxt]

 scrliter={SELECT EMPNO, LASTNAME FROM EMPLOYEE};

 scrliter.afterLast();

 while (scrliter.previous()) �4a�

 {

 System.out.println(scrliter.EmpNo() + " " �4c�

 + scrliter.LastName());

 }

 scrliter.close(); �5�

}

Figure 61. Using scrollable iterators

Chapter 3. SQLJ application programming 105

106 Application Programming Guide and Reference for Java™

Chapter 4. JDBC and SQLJ reference

The following topics contain reference information about JDBC and SQLJ:

v “Comparison of driver support for JDBC APIs”

v “Java, JDBC, and SQL data types” on page 127

v “Comparison of driver support for JDBC APIs”

v “SQLJ syntax” on page 132

v “sqlj.runtime reference” on page 142

v “DB2 Universal JDBC Driver reference information” on page 165

v “DataSource properties for the JDBC/SQLJ 2.0 Driver for OS/390 and z/OS” on

page 196

Comparison of driver support for JDBC APIs

The following tables list the JDBC interfaces and indicate which drivers supports

them. The drivers and their supported platforms are:

 Table 9. JDBC drivers for DB2 UDB

JDBC driver name Associated DB2 UDB

DB2 Universal JDBC Driver DB2 UDB for Linux, UNIX and Windows or

DB2 UDB for z/OS

JDBC/SQLJ 2.0 Driver for OS/390 DB2 UDB for z/OS

DB2 JDBC Type 2 Driver for Linux, UNIX

and Windows

DB2 UDB for Linux, UNIX and Windows

 Table 10. DB2 JDBC support for Array methods

JDBC method

DB2 Universal JDBC

Driver support

JDBC/SQLJ 2.0 Driver

for OS/390 support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

getArray No No No

getBaseType No No No

getBaseTypeName No No No

getResultSet No No No

 Table 11. DB2 JDBC support for BatchUpdateException methods

JDBC method

DB2 Universal JDBC

Driver support

JDBC/SQLJ 2.0 Driver

for OS/390 support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

Methods inherited from

java.lang.Exception

Yes Yes Yes

getUpdateCounts Yes Yes Yes

 Table 12. DB2 JDBC support for Blob methods

JDBC method

DB2 Universal JDBC

Driver support

JDBC/SQLJ 2.0 Driver

for OS/390 support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

getBinaryStream Yes Yes Yes

© Copyright IBM Corp. 1998, 2006 107

|

|
|

||

||

||
|

||

|
|
|

|

||

|
|
|
|
|

|
|
|

||||

||||

||||

||||
|

||

|
|
|
|
|

|
|
|

|
|
|||

||||
|

||

|
|
|
|
|

|
|
|

||||

Table 12. DB2 JDBC support for Blob methods (continued)

JDBC method

DB2 Universal JDBC

Driver support

JDBC/SQLJ 2.0 Driver

for OS/390 support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

getBytes Yes Yes Yes

length Yes Yes Yes

position Yes Yes Yes

setBinaryStream1,2 Yes No No

setBytes1,2 Yes No No

truncate1,2 Yes No No

Notes:

1. This is a JDBC 3.0 method.

2. This method can be used only if the fullyMaterializeLobData property is set to true.

 Table 13. DB2 JDBC support for CallableStatement methods

JDBC method

DB2 Universal JDBC

Driver support

JDBC/SQLJ 2.0 Driver

for OS/390 support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

Methods inherited from

java.sql.Statement

Yes Yes Yes

Methods inherited from

java.sql.PreparedStatement

Yes Yes Yes

getArray No No No

getBigDecimal Yes Yes Yes

getBlob Yes Yes Yes

getBoolean Yes Yes Yes

getByte Yes Yes Yes

getBytes Yes Yes Yes

getClob Yes Yes Yes

getDate Yes1 Yes2 Yes1

getDouble Yes Yes Yes

getFloat Yes Yes Yes

getInt Yes Yes Yes

getLong Yes Yes Yes

getObject Yes3 Yes3 Yes3

getRef No No No

getShort Yes Yes Yes

getString Yes Yes Yes

getTime Yes1 Yes4 Yes1

getTimestamp Yes1 Yes5 Yes1

registerOutParameter6 Yes Yes Yes

wasNull Yes Yes Yes

108 Application Programming Guide and Reference for Java™

|

|
|
|
|
|

|
|
|

||||

||||

||||

||||

||||

||||

|

|

|
|

||

|
|
|
|
|

|
|
|

|
|
|||

|
|
|||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table 13. DB2 JDBC support for CallableStatement methods (continued)

JDBC method

DB2 Universal JDBC

Driver support

JDBC/SQLJ 2.0 Driver

for OS/390 support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

Notes:

1. DB2 does no timezone adjustment for datetime values. The JDBC driver adjusts a value for the local timezone

after retrieving the value from DB2 if you specify a form of the getDate, getTime, or getTimestamp method that

includes a java.util.Calendar parameter.

2. The following forms of getDate are not supported:

getDate(int columnIndex, java.util.Calendar cal)

getDate(String columnName, java.util.Calendar cal)

3. The following form of the getObject method is not supported:

getObject(int parameterIndex, java.util.Map map)

4. The following forms of getTime are not supported:

getTime(int columnIndex, java.util.Calendar cal)

getTime(String columnName, java.util.Calendar cal)

5. The following forms of getTimestamp are not supported:

getTimestamp(int columnIndex, java.util.Calendar cal)

getTimestamp(String columnName, java.util.Calendar cal)

6. The following form of the registerOutParameter method is not supported:

registerOutParameter(int parameterIndex, int jdbcType, String typeName)

 Table 14. DB2 JDBC support for Clob methods

JDBC method

DB2 Universal JDBC

Driver support

JDBC/SQLJ 2.0 Driver

for OS/390 support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

getAsciiStream Yes Yes Yes

getCharacterStream Yes Yes Yes

getSubString Yes Yes Yes

length Yes Yes Yes

position Yes Yes Yes

setAsciiStream1,
2 Yes No No

setCharacterStream1,2 Yes No No

setString1,2 Yes No No

truncate1,2 Yes No No

Notes:

1. This is a JDBC 3.0 method.

2. This method can be used only if the fullyMaterializeLobData property is set to true.

 Table 15. DB2 JDBC support for Connection methods

JDBC method

DB2 Universal JDBC

Driver support

JDBC/SQLJ 2.0 Driver

for OS/390 support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

clearWarnings Yes Yes Yes

close Yes Yes Yes

commit Yes Yes Yes

Chapter 4. JDBC and SQLJ reference 109

|

|
|
|
|
|

|
|
|

|

|
|
|

|

|
|

|

|

|

|
|

|

|
|

|

|

|
|

||

|
|
|
|
|

|
|
|

||||

||||

||||

||||

||||

||||

||||

||||

||||

|

|

|
|

||

|
|
|
|
|

|
|
|

||||

||||

||||

Table 15. DB2 JDBC support for Connection methods (continued)

JDBC method

DB2 Universal JDBC

Driver support

JDBC/SQLJ 2.0 Driver

for OS/390 support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

createStatement Yes1 Yes

2 Yes

getAutoCommit Yes Yes Yes

getCatalog Yes Yes Yes

getMetaData Yes Yes Yes

getTransactionIsolation Yes Yes Yes

getTypeMap No No No

getWarnings Yes Yes Yes

isClosed Yes Yes Yes

isReadOnly Yes Yes Yes

nativeSQL Yes Yes Yes

prepareCall Yes Yes3 Yes

prepareStatement Yes4 Yes Yes

releaseSavepoint Yes5 No No

rollback Yes Yes6 Yes6

setAutoCommit Yes Yes Yes

setCatalog Yes Yes Yes

setReadOnly Yes7 Yes7 Yes

setSavepoint Yes5 No No

setTransactionIsolation Yes Yes Yes

setTypeMap No No No

Notes:

1. In addition to the JDBC 2.0 forms of createStatement statement, the following JDBC 3.0 form of createStatement

is supported:

createStatement(int resultSetType,

 int resultSetConcurrency,

 int resultSetHoldability)

2. For the following form of createStatement, a resultSetType value of TYPE_FORWARD_ONLY and a resultSetConcurrency

value of CONCUR_READ_ONLY are supported:

createStatement(int resultSetType, int resultSetConcurrency)

3. The following form of prepareCall is not supported:

prepareCall(String sql, int resultSetType, int resultSetConcurrency)

4. In addition to the other forms of prepareStatement, the DB2 Universal JDBC Driver supports the following JDBC

3.0 form:

prepareStatement(String sql, int autoGeneratedKeys)

5. This is a JDBC 3.0 method.

6. The JDBC 3.0 rollback(Savepoint savepoint) method is not supported.

7. The driver does not use the setting. For the DB2 Universal JDBC Driver, a connection can be set as read-only

through the readOnly property for a Connection or DataSource object.

110 Application Programming Guide and Reference for Java™

|

|
|
|
|
|

|
|
|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

|

|
|

|
|
|

|
|

|

|

|

|
|

|

|

|

|
|
|

Table 16. DB2 JDBC support for ConnectionEvent methods

JDBC method

DB2 Universal JDBC

Driver support

JDBC/SQLJ 2.0 Driver

for OS/390 support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

Methods inherited from

java.util.EventObject

Yes Yes Yes

getSQLException Yes Yes Yes

 Table 17. DB2 JDBC support for ConnectionEventListener methods

JDBC method

DB2 Universal JDBC

Driver support

JDBC/SQLJ 2.0 Driver

for OS/390 support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

connectionClosed Yes Yes Yes

connectionErrorOccurred Yes Yes Yes

 Table 18. DB2 JDBC support for ConnectionPoolDataSource methods

JDBC method

DB2 Universal JDBC

Driver support

JDBC/SQLJ 2.0 Driver

for OS/390 support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

getLoginTimeout Yes Yes Yes

getLogWriter Yes Yes Yes

getPooledConnection Yes Yes Yes

setLoginTimeout Yes1 Yes Yes

setLogWriter Yes Yes Yes

Note:

1. This method is not supported for Universal Driver type 2 connectivity on DB2 UDB in the OS/390 or z/OS

environment.

 Table 19. DB2 JDBC support for DatabaseMetaData methods

JDBC method

DB2 Universal

JDBC Driver

support

JDBC/SQLJ 2.0

Driver for

OS/390 support

DB2 JDBC

Type 2 Driver

for Linux,

UNIX and

Windows

support

allProceduresAreCallable Yes Yes Yes

allTablesAreSelectable Yes Yes Yes

dataDefinitionCausesTransactionCommit Yes Yes Yes

dataDefinitionIgnoredInTransactions Yes Yes Yes

deletesAreDetected Yes Yes Yes

doesMaxRowSizeIncludeBlobs Yes Yes Yes

getAttributes Yes No No

getBestRowIdentifier Yes Yes Yes

getCatalogs Yes Yes Yes

getCatalogSeparator Yes Yes Yes

getCatalogTerm Yes Yes Yes

getColumnPrivileges Yes Yes Yes

Chapter 4. JDBC and SQLJ reference 111

||

|
|
|
|
|

|
|
|

|
|
|||

||||
|

||

|
|
|
|
|

|
|
|

||||

||||
|

||

|
|
|
|
|

|
|
|

||||

||||

||||

||||

||||

|

|
|
|

||

|

|
|
|

|
|
|

|
|
|
|
|
|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table 19. DB2 JDBC support for DatabaseMetaData methods (continued)

JDBC method

DB2 Universal

JDBC Driver

support

JDBC/SQLJ 2.0

Driver for

OS/390 support

DB2 JDBC

Type 2 Driver

for Linux,

UNIX and

Windows

support

getColumns Yes1 Yes Yes

getConnection Yes Yes Yes

getCrossReference Yes Yes Yes

getDatabaseMajorVersion Yes No No

getDatabaseMinorVersion Yes No No

getDatabaseProductName Yes Yes Yes

getDatabaseProductVersion Yes Yes Yes

getDefaultTransactionIsolation Yes Yes Yes

getDriverMajorVersion Yes Yes Yes

getDriverMinorVersion Yes Yes Yes

getDriverName Yes Yes Yes

getDriverVersion Yes Yes Yes

getExportedKeys Yes Yes Yes

getExtraNameCharacters Yes Yes Yes

getIdentifierQuoteString Yes Yes Yes

getImportedKeys Yes Yes Yes

getIndexInfo Yes Yes Yes

getJDBCMajorVersion Yes No No

getJDBCMinorVersion Yes No No

getMaxBinaryLiteralLength Yes Yes Yes

getMaxCatalogNameLength Yes Yes Yes

getMaxCharLiteralLength Yes Yes Yes

getMaxColumnNameLength Yes Yes Yes

getMaxColumnsInGroupBy Yes Yes Yes

getMaxColumnsInIndex Yes Yes Yes

getMaxColumnsInOrderBy Yes Yes Yes

getMaxColumnsInSelect Yes Yes Yes

getMaxColumnsInTable Yes Yes Yes

getMaxConnections Yes Yes Yes

getMaxCursorNameLength Yes Yes Yes

getMaxIndexLength Yes Yes Yes

getMaxProcedureNameLength Yes Yes Yes

getMaxRowSize Yes Yes Yes

getMaxSchemaNameLength Yes Yes Yes

getMaxStatementLength Yes Yes Yes

getMaxStatements Yes Yes Yes

112 Application Programming Guide and Reference for Java™

|

|

|
|
|

|
|
|

|
|
|
|
|
|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table 19. DB2 JDBC support for DatabaseMetaData methods (continued)

JDBC method

DB2 Universal

JDBC Driver

support

JDBC/SQLJ 2.0

Driver for

OS/390 support

DB2 JDBC

Type 2 Driver

for Linux,

UNIX and

Windows

support

getMaxTableNameLength Yes Yes Yes

getMaxTablesInSelect Yes Yes Yes

getMaxUserNameLength Yes Yes Yes

getNumericFunctions Yes Yes Yes

getPrimaryKeys Yes Yes Yes

getProcedureColumns Yes Yes Yes

getProcedures Yes Yes Yes

getProcedureTerm Yes Yes Yes

getResultSetHoldability Yes No No

getSchemas Yes1 Yes Yes

getSchemaTerm Yes Yes Yes

getSearchStringEscape Yes Yes Yes

getSQLKeywords Yes Yes Yes

getSQLStateType Yes No No

getStringFunctions Yes Yes Yes

getSuperTables Yes2 No No

getSuperTypes Yes2 No No

getSystemFunctions Yes Yes Yes

getTablePrivileges Yes Yes Yes

getTables Yes1 Yes Yes

getTableTypes Yes Yes Yes

getTimeDateFunctions Yes Yes Yes

getTypeInfo Yes Yes Yes

getUDTs No No Yes2

getURL Yes Yes Yes

getUserName Yes Yes Yes

getVersionColumns Yes Yes Yes

insertsAreDetected Yes Yes Yes

isCatalogAtStart Yes Yes Yes

isReadOnly Yes Yes Yes

nullPlusNonNullIsNull Yes Yes Yes

nullsAreSortedAtEnd Yes Yes Yes

nullsAreSortedAtStart Yes Yes Yes

nullsAreSortedHigh Yes Yes Yes

nullsAreSortedLow Yes Yes Yes

othersDeletesAreVisible Yes Yes Yes

Chapter 4. JDBC and SQLJ reference 113

|

|

|
|
|

|
|
|

|
|
|
|
|
|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table 19. DB2 JDBC support for DatabaseMetaData methods (continued)

JDBC method

DB2 Universal

JDBC Driver

support

JDBC/SQLJ 2.0

Driver for

OS/390 support

DB2 JDBC

Type 2 Driver

for Linux,

UNIX and

Windows

support

othersInsertsAreVisible Yes Yes Yes

othersUpdatesAreVisible Yes Yes Yes

ownDeletesAreVisible Yes Yes Yes

ownInsertsAreVisible Yes Yes Yes

ownUpdatesAreVisible Yes Yes Yes

storesLowerCaseIdentifiers Yes Yes Yes

storesLowerCaseQuotedIdentifiers Yes Yes Yes

storesMixedCaseIdentifiers Yes Yes Yes

storesMixedCaseQuotedIdentifiers Yes Yes Yes

storesUpperCaseIdentifiers Yes Yes Yes

storesUpperCaseQuotedIdentifiers Yes Yes Yes

supportsAlterTableWithAddColumn Yes Yes Yes

supportsAlterTableWithDropColumn Yes Yes Yes

supportsANSI92EntryLevelSQL Yes Yes Yes

supportsANSI92FullSQL Yes Yes Yes

supportsANSI92IntermediateSQL Yes Yes Yes

supportsBatchUpdates Yes Yes Yes

supportsCatalogsInDataManipulation Yes Yes Yes

supportsCatalogsInIndexDefinitions Yes Yes Yes

supportsCatalogsInPrivilegeDefinitions Yes Yes Yes

supportsCatalogsInProcedureCalls Yes Yes Yes

supportsCatalogsInTableDefinitions Yes Yes Yes

SupportsColumnAliasing Yes Yes Yes

supportsConvert Yes Yes Yes

supportsCoreSQLGrammar Yes Yes Yes

supportsCorrelatedSubqueries Yes Yes Yes

supportsDataDefinitionAndDataManipulationTransactions Yes Yes Yes

supportsDataManipulationTransactionsOnly Yes Yes Yes

supportsDifferentTableCorrelationNames Yes Yes Yes

supportsExpressionsInOrderBy Yes Yes Yes

supportsExtendedSQLGrammar Yes Yes Yes

supportsFullOuterJoins Yes Yes Yes

supportsGetGeneratedKeys Yes No No

supportsGroupBy Yes Yes Yes

supportsGroupByBeyondSelect Yes Yes Yes

supportsGroupByUnrelated Yes Yes Yes

114 Application Programming Guide and Reference for Java™

|

|

|
|
|

|
|
|

|
|
|
|
|
|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table 19. DB2 JDBC support for DatabaseMetaData methods (continued)

JDBC method

DB2 Universal

JDBC Driver

support

JDBC/SQLJ 2.0

Driver for

OS/390 support

DB2 JDBC

Type 2 Driver

for Linux,

UNIX and

Windows

support

supportsIntegrityEnhancementFacility Yes Yes Yes

supportsLikeEscapeClause Yes Yes Yes

supportsLimitedOuterJoins Yes Yes Yes

supportsMinimumSQLGrammar Yes Yes Yes

supportsMixedCaseIdentifiers Yes Yes Yes

supportsMixedCaseQuotedIdentifiers Yes Yes Yes

supportsMultipleOpenResults Yes Yes No

supportsMultipleResultSets Yes Yes Yes

supportsMultipleTransactions Yes Yes Yes

supportsNamedParameters Yes No No

supportsNonNullableColumns Yes Yes Yes

supportsOpenCursorsAcross Commit Yes Yes Yes

supportsOpenCursorsAcross Rollback Yes Yes Yes

supportsOpenStatementsAcrossCommit Yes Yes Yes

supportsOpenStatementsAcrossRollback Yes Yes Yes

supportsOrderByUnrelated Yes Yes Yes

supportsOuterJoins Yes Yes Yes

supportsPositionedDelete Yes Yes Yes

supportsPositionedUpdate Yes Yes Yes

supportsResultSetConcurrency Yes Yes Yes

supportsResultSetHoldability Yes No No

supportsResultSetType Yes Yes Yes

supportsSavepoints Yes No No

supportsSchemasInDataManipulation Yes Yes Yes

supportsSchemasInIndexDefinitions Yes Yes Yes

supportsSchemasInPrivilegeDefinitions Yes Yes Yes

supportsSchemasInProcedureCalls Yes Yes Yes

supportsSchemasInTableDefinitions Yes Yes Yes

supportsSelectForUpdate Yes Yes Yes

supportsStoredProcedures Yes Yes Yes

supportsSubqueriesInComparisons Yes Yes Yes

supportsSubqueriesInExists Yes Yes Yes

supportsSubqueriesInIns Yes Yes Yes

supportsSubqueriesInQuantifieds Yes Yes Yes

supportsSuperTables Yes No No

supportsSuperTypes Yes No No

Chapter 4. JDBC and SQLJ reference 115

|

|

|
|
|

|
|
|

|
|
|
|
|
|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table 19. DB2 JDBC support for DatabaseMetaData methods (continued)

JDBC method

DB2 Universal

JDBC Driver

support

JDBC/SQLJ 2.0

Driver for

OS/390 support

DB2 JDBC

Type 2 Driver

for Linux,

UNIX and

Windows

support

supportsTableCorrelationNames Yes Yes Yes

supportsTransactionIsolationLevel Yes Yes Yes

supportsTransactions Yes Yes Yes

supportsUnion Yes Yes Yes

supportsUnionAll Yes Yes Yes

updatesAreDetected Yes Yes Yes

usesLocalFilePerTable Yes Yes Yes

usesLocalFiles Yes Yes Yes

Notes:

1. The JDBC 3.0 version of this method is supported.

2. The method can be executed, but it returns an empty ResultSet.

 Table 20. DB2 JDBC support for DataSource methods

JDBC method

DB2 Universal JDBC

Driver support

JDBC/SQLJ 2.0 Driver

for OS/390 support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

getConnection Yes Yes Yes

getLoginTimeout Yes Yes Yes1

getLogWriter Yes Yes Yes

setLoginTimeout Yes2 Yes Yes1

setLogWriter Yes Yes Yes

Notes:

1. The DB2 JDBC Type 2 Driver does not use this setting.

2. This method is not supported for Universal Driver type 2 connectivity on DB2 UDB in the OS/390 or z/OS

environment.

 Table 21. DB2 JDBC support for DataTruncation methods

JDBC method

DB2 Universal JDBC

Driver support

JDBC/SQLJ 2.0 Driver

for OS/390 support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

Methods inherited from

java.lang.Throwable

Yes Yes Yes

Methods inherited from

java.sql.SQLException

Yes Yes Yes

Methods inherited from

java.sql.SQLWarning

Yes Yes Yes

getDataSize Yes Yes Yes

getIndex Yes Yes Yes

getParameter Yes Yes Yes

getRead Yes Yes Yes

116 Application Programming Guide and Reference for Java™

|

|

|
|
|

|
|
|

|
|
|
|
|
|

||||

||||

||||

||||

||||

||||

||||

||||

|

|

|
|

||

|
|
|
|
|

|
|
|

||||

||||

||||

||||

||||

|

|

|
|
|

||

|
|
|
|
|

|
|
|

|
|
|||

|
|
|||

|
|
|||

||||

||||

||||

||||

Table 21. DB2 JDBC support for DataTruncation methods (continued)

JDBC method

DB2 Universal JDBC

Driver support

JDBC/SQLJ 2.0 Driver

for OS/390 support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

getTransferSize Yes Yes Yes

 Table 22. DB2 JDBC support for Driver methods

JDBC method

DB2 Universal JDBC

Driver support

JDBC/SQLJ 2.0 Driver

for OS/390 support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

acceptsURL Yes Yes Yes

connect Yes Yes Yes

getMajorVersion Yes Yes Yes

getMinorVersion Yes Yes Yes

getPropertyInfo Yes Yes Yes

jdbcCompliant Yes Yes Yes

 Table 23. DB2 JDBC support for DriverManager methods

JDBC method

DB2 Universal JDBC

Driver support

JDBC/SQLJ 2.0 Driver

for OS/390 support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

deregisterDriver Yes Yes Yes

getConnection Yes Yes Yes

getDriver Yes Yes Yes

getDrivers Yes Yes Yes

getLoginTimeout Yes Yes Yes1

getLogStream Yes Yes Yes

getLogWriter Yes Yes Yes

println Yes Yes Yes

registerDriver Yes Yes Yes

setLoginTimeout Yes2 Yes Yes1

setLogStream Yes Yes Yes

setLogWriter Yes Yes Yes

Notes:

1. The DB2 JDBC Type 2 Driver does not use this setting.

2. This method is not supported for Universal Driver type 2 connectivity on DB2 UDB in the OS/390 or z/OS

environment.

 Table 24. DB2 JDBC support for ParameterMetaData methods

JDBC method

DB2 Universal JDBC

Driver support

JDBC/SQLJ 2.0 Driver

for OS/390 support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

getParameterClassName No No No

getParameterCount Yes No No

getParameterMode Yes No No

Chapter 4. JDBC and SQLJ reference 117

|

|
|
|
|
|

|
|
|

||||
|

||

|
|
|
|
|

|
|
|

||||

||||

||||

||||

||||

||||
|

||

|
|
|
|
|

|
|
|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

|

|

|
|
|

||

|
|
|
|
|

|
|
|

||||

||||

||||

Table 24. DB2 JDBC support for ParameterMetaData methods (continued)

JDBC method

DB2 Universal JDBC

Driver support

JDBC/SQLJ 2.0 Driver

for OS/390 support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

getParameterType Yes No No

getParameterTypeName Yes No No

getPrecision Yes No No

getScale Yes No No

isNullable Yes No No

isSigned Yes No No

 Table 25. DB2 JDBC support for PooledConnection methods

JDBC method

DB2 Universal JDBC

Driver support

JDBC/SQLJ 2.0 Driver

for OS/390 support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

addConnectionEventListener Yes Yes Yes

close Yes Yes Yes

getConnection Yes Yes Yes

removeConnectionEventListener Yes Yes Yes

 Table 26. DB2 JDBC support for PreparedStatement methods

JDBC method

DB2 Universal JDBC

Driver support

JDBC/SQLJ 2.0 Driver

for OS/390 support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

Methods inherited from

java.sql.Statement

Yes Yes Yes

addBatch Yes Yes Yes

clearParameters Yes Yes Yes

execute Yes Yes Yes

executeQuery Yes Yes Yes

executeUpdate Yes Yes Yes

getMetaData Yes Yes Yes

setArray No No No

setAsciiStream Yes Yes Yes

setBigDecimal Yes Yes Yes

setBinaryStream Yes Yes Yes

setBlob Yes Yes Yes

setBoolean Yes Yes Yes

setByte Yes Yes Yes

setBytes Yes Yes Yes

setCharacterStream Yes Yes Yes

setClob Yes Yes Yes

setDate Yes1 Yes2 Yes1

setDouble Yes Yes Yes

118 Application Programming Guide and Reference for Java™

|

|
|
|
|
|

|
|
|

||||

||||

||||

||||

||||

||||
|

||

|
|
|
|
|

|
|
|

||||

||||

||||

||||
|

||

|
|
|
|
|

|
|
|

|
|
|||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table 26. DB2 JDBC support for PreparedStatement methods (continued)

JDBC method

DB2 Universal JDBC

Driver support

JDBC/SQLJ 2.0 Driver

for OS/390 support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

setFloat Yes Yes Yes

setInt Yes Yes Yes

setLong Yes Yes Yes

setNull Yes3 Yes3 Yes3

setObject Yes Yes Yes

setRef No No No

setShort Yes Yes Yes

setString Yes4 Yes4 Yes4

setTime Yes1 Yes5 Yes1

setTimestamp Yes1 Yes6 Yes1

setUnicodeStream Yes Yes Yes

setURL Yes No Yes

Notes:

1. DB2 does no timezone adjustment for datetime values. The JDBC driver adjusts a value for the local timezone

before sending the value to DB2 if you specify a form of the setDate, setTime, or setTimestamp method that

includes a java.util.Calendar parameter.

2. The following form of setDate is not supported:

setDate(int parameterIndex, java.sql.Date x, java.util.Calendar cal)

3. The following form of setNull is not supported:

setNull(int parameterIndex, int jdbcType, String typeName)

4. setString is not supported if the column has the FOR BIT DATA attribute or the data type is BLOB.

5. The following form of setTime is not supported:

setTime(int parameterIndex, java.sql.Time x, java.util.Calendar cal)

6. The following form of setTimestamp is not supported:

setTimestamp(int parameterIndex, java.sql.Timestamp x, java.util.Calendar cal)

 Table 27. DB2 JDBC support for Ref methods

JDBC method

DB2 Universal JDBC

Driver support

JDBC/SQLJ 2.0 Driver

for OS/390 support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

get BaseTypeName No No No

 Table 28. DB2 JDBC support for ResultSet methods

JDBC method

DB2 Universal JDBC

Driver support

JDBC/SQLJ 2.0 Driver

for OS/390 support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

absolute Yes No Yes

afterLast Yes No Yes

beforeFirst Yes No Yes

cancelRowUpdates Yes No No

Chapter 4. JDBC and SQLJ reference 119

|

|
|
|
|
|

|
|
|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

|

|
|
|

|

|

|

|

|

|

|

|

|

|
|

||

|
|
|
|
|

|
|
|

||||
|

||

|
|
|
|
|

|
|
|

||||

||||

||||

||||

Table 28. DB2 JDBC support for ResultSet methods (continued)

JDBC method

DB2 Universal JDBC

Driver support

JDBC/SQLJ 2.0 Driver

for OS/390 support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

clearWarnings Yes Yes Yes

close Yes Yes Yes

deleteRow Yes No No

findColumn Yes Yes Yes

first Yes No Yes

getArray No No No

getAsciiStream Yes Yes Yes

getBigDecimal Yes Yes Yes

getBinaryStream Yes1 Yes1 Yes

getBlob Yes Yes Yes

getBoolean Yes Yes Yes

getByte Yes Yes Yes

getBytes Yes Yes Yes

getCharacterStream Yes Yes Yes

getClob Yes Yes Yes

getConcurrency Yes Yes Yes

getCursorName Yes Yes Yes

getDate Yes2 Yes3 Yes2

getDouble Yes Yes Yes

getFetchDirection Yes Yes Yes

getFetchSize Yes Yes Yes

getFloat Yes Yes Yes

getInt Yes Yes Yes

getLong Yes Yes Yes

getMetaData Yes Yes Yes

getObject Yes4 Yes4 Yes4

getRef No No No

getRow Yes No Yes

getShort Yes Yes Yes

getStatement Yes Yes Yes

getString Yes Yes Yes

getTime Yes2 Yes5 Yes2

getTimestamp Yes2 Yes6 Yes2

getType Yes Yes Yes

getUnicodeStream Yes Yes Yes

getURL Yes No Yes

getWarnings Yes Yes Yes

insertRow No No No

120 Application Programming Guide and Reference for Java™

|

|
|
|
|
|

|
|
|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table 28. DB2 JDBC support for ResultSet methods (continued)

JDBC method

DB2 Universal JDBC

Driver support

JDBC/SQLJ 2.0 Driver

for OS/390 support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

isAfterLast Yes No Yes

isBeforeFirst Yes No Yes

isFirst Yes No Yes

isLast Yes No Yes

last Yes No Yes

moveToCurrentRow Yes No No

moveToInsertRow No No No

next Yes Yes Yes

previous Yes No Yes

refreshRow Yes No No

relative Yes No Yes

rowDeleted Yes No No

rowInserted No No No

rowUpdated Yes No No

setFetchDirection Yes Yes7 Yes

setFetchSize Yes Yes Yes

updateAsciiStream Yes No No

updateBigDecimal Yes No No

updateBinaryStream Yes No No

updateBoolean Yes No No

updateByte Yes No No

updateBytes Yes No No

updateCharacterStream Yes No No

updateDate Yes No No

updateDouble Yes No No

updateFloat Yes No No

updateInt Yes No No

updateLong Yes No No

updateNull Yes No No

updateObject Yes No No

updateRow Yes No No

updateShort Yes No No

updateString Yes No No

updateTime Yes No No

updateTimestamp Yes No No

wasNull Yes Yes Yes

Chapter 4. JDBC and SQLJ reference 121

|

|
|
|
|
|

|
|
|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table 28. DB2 JDBC support for ResultSet methods (continued)

JDBC method

DB2 Universal JDBC

Driver support

JDBC/SQLJ 2.0 Driver

for OS/390 support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

Notes:

1. getBinaryStream is not supported for CLOB columns.

2. DB2 does no timezone adjustment for datetime values. The JDBC driver adjusts a value for the local timezone

after retrieving the value from DB2 if you specify a form of the getDate, getTime, or getTimestamp method that

includes a java.util.Calendar parameter.

3. The following forms of getDate are not supported:

getDate(int columnIndex, java.util.Calendar cal)

getDate(String columnName, java.util.Calendar cal)

4. The following form of the getObject method is not supported:

getObject(int parameterIndex, java.util.Map map)

5. The following forms of getTime are not supported:

getTime(int columnIndex, java.util.Calendar cal)

getTime(String columnName, java.util.Calendar cal)

6. The following forms of getTimestamp are not supported:

getTimestamp(int columnIndex, java.util.Calendar cal)

getTimestamp(String columnName, java.util.Calendar cal)

7. Supported only if direction is ResultSet.FETCH_FORWARD.

 Table 29. DB2 JDBC support for ResultSetMetaData methods

JDBC method

DB2 Universal JDBC

Driver support

JDBC/SQLJ 2.0 Driver

for OS/390 support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

getCatalogName Yes Yes Yes

getColumnClassName No No Yes

getColumnCount Yes Yes Yes

getColumnDisplaySize Yes Yes Yes

getColumnLabel Yes Yes Yes

getColumnName Yes Yes Yes

getColumnType Yes Yes Yes

getColumnTypeName Yes Yes Yes

getPrecision Yes Yes Yes

getScale Yes Yes Yes

getSchemaName Yes Yes Yes

getTableName Yes Yes Yes

isAutoIncrement Yes Yes Yes

isCaseSensitive Yes Yes Yes

isCurrency Yes Yes Yes

isDefinitelyWritable Yes Yes Yes

isNullable Yes Yes Yes

isReadOnly Yes Yes Yes

isSearchable Yes Yes Yes

isSigned Yes Yes Yes

122 Application Programming Guide and Reference for Java™

|

|
|
|
|
|

|
|
|

|

|

|
|
|

|

|
|

|

|

|

|
|

|

|
|

|
|

||

|
|
|
|
|

|
|
|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table 29. DB2 JDBC support for ResultSetMetaData methods (continued)

JDBC method

DB2 Universal JDBC

Driver support

JDBC/SQLJ 2.0 Driver

for OS/390 support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

isWritable Yes Yes Yes

 Table 30. DB2 JDBC support for SQLData methods

JDBC method

DB2 Universal JDBC

Driver support

JDBC/SQLJ 2.0 Driver

for OS/390 support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

getSQLTypeName No No No

readSQL No No No

writeSQL No No No

 Table 31. DB2 JDBC support for SQLException methods

JDBC method

DB2 Universal JDBC

Driver support

JDBC/SQLJ 2.0 Driver

for OS/390 support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

Methods inherited from

java.lang.Exception

Yes Yes Yes

getSQLState Yes Yes Yes

getErrorCode Yes Yes Yes

getNextException Yes Yes Yes

setNextException Yes Yes Yes

 Table 32. DB2 JDBC support for SQLInput methods

JDBC method

DB2 Universal JDBC

Driver support

JDBC/SQLJ 2.0 Driver

for OS/390 support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

readArray No No No

readAsciiStream No No No

readBigDecimal No No No

readBinaryStream No No No

readBlob No No No

readBoolean No No No

readByte No No No

readBytes No No No

readCharacterStream No No No

readClob No No No

readDate No No No

readDouble No No No

readFloat No No No

readInt No No No

readLong No No No

readObject No No No

Chapter 4. JDBC and SQLJ reference 123

|

|
|
|
|
|

|
|
|

||||
|

||

|
|
|
|
|

|
|
|

||||

||||

||||
|

||

|
|
|
|
|

|
|
|

|
|
|||

||||

||||

||||

||||
|

||

|
|
|
|
|

|
|
|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table 32. DB2 JDBC support for SQLInput methods (continued)

JDBC method

DB2 Universal JDBC

Driver support

JDBC/SQLJ 2.0 Driver

for OS/390 support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

readRef No No No

readShort No No No

readString No No No

readTime No No No

readTimestamp No No No

wasNull No No No

 Table 33. DB2 JDBC support for SQLOutput methods

JDBC method

DB2 Universal JDBC

Driver support

JDBC/SQLJ 2.0 Driver

for OS/390 support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

writeArray No No No

writeAsciiStream No No No

writeBigDecimal No No No

writeBinaryStream No No No

writeBlob No No No

writeBoolean No No No

writeByte No No No

writeBytes No No No

writeCharacterStream No No No

writeClob No No No

writeDate No No No

writeDouble No No No

writeFloat No No No

writeInt No No No

writeLong No No No

writeObject No No No

writeRef No No No

writeShort No No No

writeString No No No

writeStruct No No No

writeTime No No No

writeTimestamp No No No

 Table 34. DB2 JDBC support for Statement methods

JDBC method

DB2 Universal JDBC

Driver support

JDBC/SQLJ 2.0 Driver

for OS/390 support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

addBatch Yes Yes Yes

cancel Yes1,2 No Yes

124 Application Programming Guide and Reference for Java™

|

|
|
|
|
|

|
|
|

||||

||||

||||

||||

||||

||||
|

||

|
|
|
|
|

|
|
|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||
|

||

|
|
|
|
|

|
|
|

||||

||||

Table 34. DB2 JDBC support for Statement methods (continued)

JDBC method

DB2 Universal JDBC

Driver support

JDBC/SQLJ 2.0 Driver

for OS/390 support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

clearBatch Yes Yes Yes

clearWarnings Yes Yes Yes

close Yes Yes Yes

execute Yes3 Yes Yes

executeBatch Yes Yes Yes

executeQuery Yes Yes Yes

executeUpdate Yes3 Yes Yes

getConnection Yes No Yes

getFetchDirection Yes No Yes

getFetchSize Yes No Yes

getGeneratedKeys Yes No No

getMaxFieldSize Yes Yes Yes

getMaxRows Yes Yes Yes

getMoreResults Yes4 Yes Yes

getQueryTimeout Yes2 Yes Yes

getResultSet Yes Yes Yes

getResultSetConcurrency Yes Yes Yes

getResultSetType Yes Yes Yes

getUpdateCount5 Yes Yes Yes

getWarnings Yes Yes Yes

setCursorName Yes Yes Yes

setEscapeProcessing Yes Yes Yes

setFetchDirection Yes Yes Yes

setFetchSize Yes No Yes

setMaxFieldSize Yes Yes Yes

setMaxRows Yes Yes Yes

setQueryTimeout Yes6 Yes6 Yes

Chapter 4. JDBC and SQLJ reference 125

|

|
|
|
|
|

|
|
|

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

||||

Table 34. DB2 JDBC support for Statement methods (continued)

JDBC method

DB2 Universal JDBC

Driver support

JDBC/SQLJ 2.0 Driver

for OS/390 support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

Notes:

1. With Universal Driver type 4 connectivity, you can execute Statement.cancel() only if the database server supports

the DRDA INTRDBRQS (interrupt relational database request) command. Only DB2 UDB for z/OS servers at the

Version 8 or later level have this support. Therefore, with Universal Driver type 4 connectivity, you can execute

Statement.cancel() only for connections to DB2 UDB for z/OS at Version 8 or later.

2. This method is supported only for:

v Universal Driver type 2 connectivity to DB2 UDB Linux, UNIX, and Windows server at Version 8.1 or later

v Universal Driver type 4 connectivity to DB2 UDB for z/OS Version 8 or later

3. In addition to the other forms of execute or executeUpdate, the DB2 Universal JDBC Driver supports the

following JDBC 3.0 forms:

executeUpdate(String sql, int autoGeneratedKeys)

execute(String sql, int autoGeneratedKeys)

4. In addition to getMoreResults(), the DB2 Universal JDBC Driver supports the following JDBC 3.0 forms:

v getMoreResults(java.sql.Statement.CLOSE_CURRENT_RESULT)

v getMoreResults(java.sql.Statement.KEEP_CURRENT_RESULT)

v getMoreResults(java.sql.Statement.CLOSE_ALL_RESULTS)

5. Not supported for stored procedure ResultSets.

6. For Universal Driver type 2 connectivity in the OS/390 or z/OS environment, this method is supported only for a

seconds value of 0.

 Table 35. DB2 JDBC support for Struct methods

JDBC method

DB2 Universal JDBC

Driver support

JDBC/SQLJ 2.0 Driver

for OS/390 support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

getSQLTypeName No No No

getAttributes No No No

 Table 36. DB2 JDBC support for XAConnection methods

JDBC method

DB2 Universal JDBC

Driver support

JDBC/SQLJ 2.0 Driver

for OS/390 support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

Methods inherited from

javax.sql.PooledConnection

Yes1 No Yes

getXAResource Yes1 No Yes

Notes:

1. This method is supported for DB2 Universal JDBC Driver type 2 connectivity to a DB2 UDB for Linux, UNIX and

Windows server or DB2 Universal JDBC Driver type 4 connectivity to a DB2 UDB for z/OS server.

 Table 37. DB2 JDBC support for XADataSource methods

JDBC method

DB2 Universal JDBC

Driver support

JDBC/SQLJ 2.0 Driver

for OS/390 support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

getLoginTimeout Yes No Yes

getLogWriter Yes No Yes

getXAConnection Yes No Yes

setLoginTimeout Yes No Yes

126 Application Programming Guide and Reference for Java™

|

|
|
|
|
|

|
|
|

|

#
#
#
#

|

|

|

|
|

|
|

|
|
|
|

|

|
|
|

||

|
|
|
|
|

|
|
|

||||

||||
|

||

|
|
|
|
|

|
|
|

|
|
|||

||||

|

|
|
|

||

|
|
|
|
|

|
|
|

||||

||||

||||

||||

Table 37. DB2 JDBC support for XADataSource methods (continued)

JDBC method

DB2 Universal JDBC

Driver support

JDBC/SQLJ 2.0 Driver

for OS/390 support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

setLogWriter Yes No Yes

Java, JDBC, and SQL data types

The following tables summarize the mappings of Java data types to JDBC and SQL

data types for a DB2 UDB for OS/390 or z/OS system.

Table 38 summarizes the mappings of Java data types to DB2 data types for

PreparedStatement.setXXX or ResultSet.updateXXX methods in JDBC programs,

and for input host expressions in SQLJ programs. When more than one Java data

type is listed, the first data type is the recommended data type.

 Table 38. Mappings of Java data types to DB2 data types for updating DB2 tables

Java data type SQL data type

short, boolean1, byte1 SMALLINT

int, java.lang.Integer INTEGER

long, java.lang.Long DECIMAL(19,0)2

long, java.lang.Long BIGINT3

float, java.lang.Float REAL

double, java.lang.Double DOUBLE

java.math.BigDecimal DECIMAL(p,s)4

java.lang.String CHAR(n)5

java.lang.String GRAPHIC(m)6

java.lang.String VARCHAR(n)7

java.lang.String VARGRAPHIC(m)8

java.lang.String CLOB(n)9

byte[] CHAR(n) FOR BIT DATA5

byte[] VARCHAR(n) FOR BIT DATA7

byte[] BLOB(n)9,10

byte[] ROWID

java.sql.Blob BLOB(n)10

java.sql.Clob CLOB(n)10

java.sql.Clob DBCLOB(m)11

java.sql.Date DATE

java.sql.Time TIME

java.sql.Timestamp TIMESTAMP

java.io.ByteArrayInputStream BLOB(n)10

java.io.StringReader CLOB(n)10

java.io.ByteArrayInputStream CLOB(n)10

com.ibm.db2.jcc.DB2RowID ROWID

java.net.URL DATALINK12

Chapter 4. JDBC and SQLJ reference 127

|

|
|
|
|
|

|
|
|

||||
|

|
|

|
|

|
|
|
|

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

Table 38. Mappings of Java data types to DB2 data types for updating DB2 tables (continued)

Java data type SQL data type

Notes:

 1. DB2 has no exact equivalent for the Java boolean or byte data types, but the best fit is SMALLINT.

 2. DB2 UDB in the OS/390 or z/OS environment has no exact equivalent for the Java long or java.lang.Long data

types, but the best fit is DECIMAL(19,0).

 3. The BIGINT SQL type is available only on DB2 UDB for Linux, UNIX and Windows.

 4. p is the decimal precision and s is the scale of the DB2 column.

You should design financial applications so that java.math.BigDecimal columns map to DECIMAL columns. If

you know the precision and scale of a DECIMAL column, updating data in the DECIMAL column with data in a

java.math.BigDecimal variable results in better precision and performance than using other combinations of data

types.

 5. n<=255.

 6. m<=127.

 7. n<=32704.

 8. m<=16352.

 9. This mapping is valid only if DB2 can determine the data type of the column.

10. n<=2147483647.

11. m<=1073741823.

12. The DATALINK data type is supported only by the DB2 JDBC Type 2 Driver for Linux, UNIX and Windows.

Table 39 summarizes the mappings of DB2 data types to Java data types for

ResultSet.getXXX methods in JDBC programs, and for iterators in SQLJ programs.

This table does not list Java numeric wrapper object types, which are retrieved

using ResultSet.getObject.

 Table 39. Mappings of DB2 data types to Java data types for retrieving data from DB2 tables

SQL data type

Recommended Java data type or

Java object type Other supported Java data types

SMALLINT short byte, int, long, float, double,

java.math.BigDecimal, boolean,

java.lang.String

INTEGER int short, byte, long, float, double,

java.math.BigDecimal, boolean,

java.lang.String

BIGINT1 long int, short, byte, float, double,

java.math.BigDecimal, boolean,

java.lang.String

DECIMAL(p,s) or NUMERIC(p,s)2 java.math.BigDecimal long, int, short, byte, float, double,

boolean, java.lang.String

REAL float long, int, short, byte, double,

java.math.BigDecimal, boolean,

java.lang.String

DOUBLE double long, int, short, byte, float,

java.math.BigDecimal, boolean,

java.lang.String

CHAR(n) java.lang.String long, int, short, byte, float, double,

java.math.BigDecimal, boolean,

java.sql.Date, java.sql.Time,

java.sql.Timestamp,

java.io.InputStream, java.io.Reader

128 Application Programming Guide and Reference for Java™

|

||

|

|

|
|

|

|

|
|
|
|

|

|

|

|

|

|

|

|
|

|
|
|
|

||

|
|
||

|||
|
|

|||
|
|

|||
|
|

|||
|

|||
|
|

|||
|
|

|||
|
|
|
|

Table 39. Mappings of DB2 data types to Java data types for retrieving data from DB2 tables (continued)

SQL data type

Recommended Java data type or

Java object type Other supported Java data types

VARCHAR(n) java.lang.String long, int, short, byte, float, double,

java.math.BigDecimal, boolean,

java.sql.Date, java.sql.Time,

java.sql.Timestamp,

java.io.InputStream, java.io.Reader

CHAR(n) FOR BIT DATA byte[] java.lang.String,

java.io.InputStream, java.io.Reader

VARCHAR(n) FOR BIT DATA byte[] java.lang.String,

java.io.InputStream, java.io.Reader

GRAPHIC(m) java.lang.String long, int, short, byte, float, double,

java.math.BigDecimal, boolean,

java.sql.Date, java.sql.Time,

java.sql.Timestamp,

java.io.InputStream, java.io.Reader

VARGRAPHIC(m) java.lang.String long, int, short, byte, float, double,

java.math.BigDecimal, boolean,

java.sql.Date, java.sql.Time,

java.sql.Timestamp,

java.io.InputStream, java.io.Reader

CLOB(n) java.sql.Clob java.lang.String

BLOB(n) java.sql.Blob byte[]3

DBCLOB(m) No exact equivalent. Use

java.sql.Clob.

ROWID com.ibm.db2.jcc.DB2RowID byte[]

DATE java.sql.Date java.sql.String, java.sql.Timestamp

TIME java.sql.Time java.sql.String, java.sql.Timestamp

TIMESTAMP java.sql.Timestamp java.sql.String, java.sql.Date,

java.sql.Time, java.sql.Timestamp

DATALINK java.net.URL4

Notes:

1. The BIGINT SQL type is available only on DB2 UDB for Linux, UNIX and Windows.

2. You should design financial applications so that DECIMAL columns map to java.math.BigDecimal columns. If you

know the precision and scale of a DECIMAL column, retrieving data from that column into a

java.math.BigDecimal variable results in better precision and performance than using other combinations of data

types.

3. This mapping is valid only if DB2 can determine the data type of the column.

4. The DATALINK data type is supported only by the DB2 JDBC Type 2 Driver for Linux, UNIX and Windows.

Table 40 on page 130 summarizes mappings of Java data types to JDBC data types

and DB2 data types for user-defined function and stored procedure parameters.

The mappings of Java data types to JDBC data types are for

CallableStatement.registerOutParameter methods in JDBC programs. The

mappings of Java data types to DB2 data types are for parameters in stored

procedure or user-defined function invocations.

If more than one Java data type is listed in Table 40 on page 130, the first data type

is the recommended data type.

Chapter 4. JDBC and SQLJ reference 129

|

|
|
||

|||
|
|
|
|

|||
|

|||
|

|||
|
|
|
|

|||
|
|
|
|

|||

|||

||
|
|

|||

|||

|||

|||
|

|||

|

|

|
|
|
|

|

|
|

|
|
|
|
|
|

|
|

Table 40. Mappings of Java, JDBC, and SQL data types for calling stored procedures and user-defined functions

Java data type JDBC data type SQL data type

boolean1 BIT SMALLINT

byte1 TINYINT SMALLINT

short, java.lang.Integer SMALLINT SMALLINT

int, java.lang.Integer INTEGER INTEGER

long BIGINT BIGINT2

float, java.lang.Float REAL REAL

float, java.lang.Float FLOAT REAL

double, java.lang.Double DOUBLE DOUBLE

java.math.BigDecimal NUMERIC DECIMAL

java.math.BigDecimal DECIMAL DECIMAL

java.lang.String CHAR CHAR

java.lang.String CHAR GRAPHIC

java.lang.String VARCHAR VARCHAR

java.lang.String VARCHAR VARGRAPHIC

java.lang.String LONGVARCHAR VARCHAR

java.lang.String VARCHAR CLOB(n)

java.lang.String LONGVARCHAR CLOB(n)

java.lang.String CLOB CLOB(n)

byte[] BINARY CHAR FOR BIT DATA

byte[] VARBINARY VARCHAR FOR BIT

DATA

byte[] LONGVARBINARY VARCHAR FOR BIT

DATA

byte[] VARBINARY BLOB(n)3

byte[] LONGVARBINARY BLOB(n)3

java.sql.Date DATE DATE

java.sql.Time TIME TIME

java.sql.Timestamp TIMESTAMP TIMESTAMP

java.sql.Blob BLOB BLOB

java.sql.Clob CLOB CLOB

java.sql.Clob CLOB DBCLOB

java.io.ByteArrayInputStream None BLOB(n)

java.io.StringReader None CLOB(n)

java.io.ByteArrayInputStream None CLOB(n)

com.ibm.db2.jcc.DB2RowID com.ibm.db2.jcc.DB2Types.ROWID ROWID

java.net.URL DATALINK DATALINK4

130 Application Programming Guide and Reference for Java™

||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|||
|

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

Table 40. Mappings of Java, JDBC, and SQL data types for calling stored procedures and user-defined

functions (continued)

Java data type JDBC data type SQL data type

Notes:

1. A stored procedure or user-defined function that is defined with a SMALLINT parameter can be invoked with a

boolean or byte parameter. However, this is not recommended.

2. The BIGINT SQL type is available only on DB2 UDB for Linux, UNIX and Windows servers.

3. This mapping is valid only if DB2 can determine the data type of the column.

4. The DATALINK data type is supported only by the DB2 JDBC Type 2 Driver for Linux, UNIX and Windows.

Table 41 summarizes mappings of the SQL parameter data types in a CREATE

PROCEDURE or CREATE FUNCTION statement to the data types in the

corresponding Java stored procedure or user-defined function method.

For DB2 UDB for Linux, UNIX and Windows, if more than one Java data type is

listed for an SQL data type, only the first Java data type is valid.

For DB2 UDB in the OS/390 or z/OS environment, if more than one Java data

type is listed, and you use a data type other than the first data type as a method

parameter, you need to include a method signature in the EXTERNAL clause of

your CREATE PROCEDURE or CREATE FUNCTION statement that specifies the

Java data types of the method parameters.

 Table 41. Mappings of SQL data types in a CREATE PROCEDURE or CREATE FUNCTION statement to data types in

the corresponding Java stored procedure or user-defined function program

SQL data type in CREATE PROCEDURE or CREATE

FUNCTION

Data type in Java stored procedure or

user-defined function method

SMALLINT short, java.lang.Integer

INTEGER int, java.lang.Integer

BIGINT1 long

REAL float, java.lang.Float

DOUBLE double, java.lang.Double

DECIMAL java.math.BigDecimal

CHAR java.lang.String

GRAPHIC java.lang.String

VARCHAR java.lang.String

VARGRAPHIC java.lang.String

CHAR FOR BIT DATA byte[]

VARCHAR FOR BIT DATA byte[]

DATE java.sql.Date

TIME java.sql.Time

TIMESTAMP java.sql.Timestamp

BLOB java.sql.Blob

CLOB java.sql.Clob

DBCLOB java.sql.Clob

ROWID com.ibm.db2.jcc.DB2Types.ROWID

DATALINK java.net.URL2

Chapter 4. JDBC and SQLJ reference 131

|
|

|||

|

|
|

|

|

|
|

|
|
|

|
|

|
|
|
|
|

||
|

|
|
|
|

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

Table 41. Mappings of SQL data types in a CREATE PROCEDURE or CREATE FUNCTION statement to data types in

the corresponding Java stored procedure or user-defined function program (continued)

SQL data type in CREATE PROCEDURE or CREATE

FUNCTION

Data type in Java stored procedure or

user-defined function method

Notes:

1. The BIGINT SQL type is available only on DB2 UDB for Linux, UNIX and Windows servers.

2. The DATALINK data type is supported only by the DB2 JDBC Type 2 Driver for Linux, UNIX and Windows.

SQLJ syntax

The following topics contain information about the syntax of SQLJ clauses:

v “SQLJ clause”

v “SQLJ host-expression”

v “SQLJ implements-clause” on page 133

v “SQLJ with-clause” on page 134

v “SQLJ connection-declaration-clause” on page 135

v “SQLJ iterator-declaration-clause” on page 136

v “SQLJ executable-clause” on page 137

v “SQLJ context-clause” on page 138

v “SQLJ statement-clause” on page 138

v “SQLJ SET-TRANSACTION-clause” on page 140

v “SQLJ assignment-clause” on page 140

v “SQLJ iterator-conversion-clause” on page 141

SQLJ clause

The SQL statements in an SQLJ program are in SQLJ clauses. The general syntax of

an SQLJ clause is:

�� #sql connection-declaration-clause

iterator-declaration-clause

executable-clause

 ; ��

Keywords in an SQLJ clause are case sensitive, unless those keywords are part of

an SQL statement in an executable clause.

SQLJ host-expression

A host expression is a Java variable or expression that is referenced by SQLJ

clauses in an SQLJ application program.

 Syntax:

�� : simple-variable

IN

(complex-expression)

OUT

INOUT

 ��

 Description:

132 Application Programming Guide and Reference for Java™

|
|

|
|
|
|

|

|

|
|

|

: Indicates that the variable or expression that follows is a host expression. The

colon must immediately precede the variable or expression.

IN|OUT|INOUT

For a host expression that is used as a parameter in a stored procedure call,

identifies whether the parameter provides data to the stored procedure (IN),

retrieves data from the stored procedure (OUT), or does both (INOUT). The

default is IN.

simple-variable

Specifies a Java unqualified identifier.

complex-expression

Specifies a Java expression that results in a single value.

 Usage notes:

v A complex expression must be enclosed in parentheses.

v ANSI/ISO rules govern where a host expression can appear in a static SQL

statement.

SQLJ implements-clause

The implements clause derives one or more classes from a Java interface.

 Syntax:

��

implements

�

 ,

interface-element

��

interface-element:

�� sqlj.runtime.ForUpdate

sqlj.runtime.Scrollable

user-specified-interface-class

 ��

 Description:

interface-element

Specifies a user-defined Java interface, the SQLJ interface

sqlj.runtime.ForUpdate or the SQLJ interface sqlj.runtime.Scrollable.

 You need to implement sqlj.runtime.ForUpdate when you declare an iterator

for a positioned UPDATE or positioned DELETE operation. See “Performing

positioned UPDATE and DELETE operations in an SQLJ application” on page

78 for information on performing a positioned UPDATE or positioned DELETE

operation in SQLJ.

 You need to implement sqlj.runtime.Scrollable when you declare a

scrollable iterator. See “Using scrollable iterators in an SQLJ application” on

page 102 for information on scrollable iterators.

Chapter 4. JDBC and SQLJ reference 133

SQLJ with-clause

The with clause specifies a set of one or more attributes for an iterator or a

connection context.

 Syntax:

��

with

�

 ,

(

with-element

)

��

with-element:

��

�

 holdability=true

holdability=false

sensitivity=INSENSITIVE

sensitivity=ASENSITIVE

sensitivity=SENSITIVE

dynamic=false

,

dynamic=true

,

updateColumns=

"

column-name

"

Java-ID=Java-constant-expression

dataSource=

"

logical-datasource-name

"

 ��

 Description:

holdability

For an iterator, specifies whether an iterator keeps its position in a table after a

COMMIT is executed. The value for holdability must be true or false.

sensitivity

For an iterator, specifies whether changes that are made to the underlying table

can be visible to the iterator after it is opened. The value must be

INSENSITIVE, SENSITIVE, or ASENSITIVE. The default is INSENSITIVE.

dynamic

For an iterator that is defined with sensitivity=SENSITIVE, specifies whether

the following cases are true:

v When the application executes positioned UPDATE and DELETE statements

with the iterator, those changes are visible to the iterator.

v When the application executes INSERT, UPDATE, and DELETE statements

within the application but outside the iterator, those changes are visible to

the iterator.

The value for dynamic must be true or false. The default is false.

 If the value of dynamic is true, the data source must support dynamic

scrollable cursors.

134 Application Programming Guide and Reference for Java™

DB2 UDB for Linux, UNIX and Windows servers do not support dynamic

scrollable cursors. Specify true only if your application accesses data on DB2

UDB for z/OS servers, at Version 8 or later.

updateColumns

For an iterator, specifies the columns that are to be modified when the iterator

is used for a positioned UPDATE statement. The value for updateColumns

must be a literal string that contains the column names, separated by commas.

column-name

For an iterator, specifies a column of the result table that is to be updated

using the iterator.

Java-ID

For an iterator or connection context, specifies a Java variable that identifies a

user-defined attribute of the iterator or connection context. The value of

Java-constant-expression is also user-defined.

dataSource

For a connection context, specifies the logical name of a separately-created

DataSource object that represents the data source to which the application will

connect. This option is available only for the DB2 Universal JDBC Driver.

 Usage notes:

v The value on the left side of a with element must be unique within its with

clause.

v If you specify updateColumns in a with element of an iterator declaration

clause, the iterator declaration clause must also contain an implements clause

that specifies the sqlj.runtime.ForUpdate interface.

v If you do not customize your SQLJ program, the JDBC driver ignores the value

of holdability that is in the with clause. Instead, the driver uses the JDBC driver

setting for holdability.

SQLJ connection-declaration-clause

The connection declaration clause declares a connection to a data source in an

SQLJ application program.

 Syntax:

��

Java-modifiers
 context Java-class-name

implements-clause

with-clause
 ��

 Description:

Java-modifiers

Specifies modifiers that are valid for Java class declarations, such as static,

public, private, or protected.

Java-class-name

Specifies a valid Java identifier. During the program preparation process, SQLJ

generates a connection context class whose name is this identifier.

implements-clause

See “SQLJ implements-clause” on page 133 for a description of this clause. In a

connection declaration clause, the interface class to which the implements

clause refers must be a user-defined interface class.

Chapter 4. JDBC and SQLJ reference 135

with-clause

See “SQLJ with-clause” on page 134 for a description of this clause.

 Usage notes:

v SQLJ generates a connection class declaration for each connection declaration

clause you specify. SQLJ data source connections are objects of those generated

connection classes.

v You can specify a connection declaration clause anywhere that a Java class

definition can appear in a Java program.

SQLJ iterator-declaration-clause

An iterator declaration clause declares a positioned iterator class or a named

iterator class in an SQLJ application program. An iterator contains the result table

from a query. SQLJ generates an iterator class for each iterator declaration clause

you specify. An iterator is an object of an iterator class.

An iterator declaration clause has a form for a positioned iterator and a form for a

named iterator. The two kinds of iterators are distinct and incompatible Java types

that are implemented with different interfaces.

 Syntax:

��

Java-modifiers
 iterator Java-class-name

implements-clause

with-clause
 �

� (positioned-iterator-column-declarations)

named-iterator-column-declarations
 ��

positioned-iterator-column declarations:

��

�

 ,

Java-data-type

��

named-iterator-column-declarations:

��

�

 ,

Java-data-type

Java-ID

��

 Description:

Java-modifiers

Any modifiers that are valid for Java class declarations, such as static, public,

private, or protected.

136 Application Programming Guide and Reference for Java™

Java-class-name

Any valid Java identifier. During the program preparation process, SQLJ

generates an iterator class whose name is this identifier.

implements-clause

See “SQLJ implements-clause” on page 133 for a description of this clause. For

an iterator declaration clause that declares an iterator for a positioned UPDATE

or positioned DELETE operation, the implements clause must specify interface

sqlj.runtime.ForUpdate. For an iterator declaration clause that declares a

scrollable iterator, the implements clause must specify interface

sqlj.runtime.Scrollable.

with-clause

See “SQLJ with-clause” on page 134 for a description of this clause.

positioned-iterator-column-declarations

Specifies a list of Java data types, which are the data types of the columns in

the positioned iterator. The data types in the list must be separated by

commas. The order of the data types in the positioned iterator declaration is

the same as the order of the columns in the result table. For online checking

during serialized profile customization to succeed, the data types of the

columns in the iterator must be compatible with the data types of the columns

in the result table. See “Java, JDBC, and SQL data types” on page 127 for a list

of compatible data types.

named-iterator-column-declarations

Specifies a list of Java data types and Java identifiers, which are the data types

and names of the columns in the named iterator. Pairs of data types and names

must be separated by commas. The name of a column in the iterator must

match, except for case, the name of a column in the result table. For online

checking during serialized profile customization to succeed, the data types of

the columns in the iterator must be compatible with the data types of the

columns in the result table. See “Java, JDBC, and SQL data types” on page 127

for a list of compatible data types.

 Usage notes:

v An iterator declaration clause can appear anywhere in a Java program that a

Java class declaration can appear.

v When a named iterator declaration contains more than one pair of Java data

types and Java IDs, all Java IDs within the list must be unique.

SQLJ executable-clause

An executable clause contains an SQL statement or an assignment statement. An

assignment statement assigns the result of an SQL operation to a Java variable.

This topic describes the general form of an executable clause.

 Syntax:

��

context-clause
 statement-clause

assignment-clause
 ��

 Usage notes:

Chapter 4. JDBC and SQLJ reference 137

v An executable clause can appear anywhere in a Java program that a Java

statement can appear.

v SQLJ reports negative SQL codes from executable clauses through class

java.sql.SQLException.

If SQLJ raises a run-time exception during the execution of an executable clause,

the value of any host expression of type OUT or INOUT is undefined.

SQLJ context-clause

A context clause specifies a connection context, an execution context, or both. You

use a connection context to connect to a data source. You use an execution context

to monitor and modify SQL statement execution.

 Syntax:

�� [connection-context]

execution-context

connection-context

,

execution context

 ��

 Description:

connection-context

Specifies a valid Java identifier that is declared earlier in the SQLJ program.

That identifier must be declared as an instance of the connection context class

that SQLJ generates for a connection declaration clause.

execution-context

Specifies a valid Java identifier that is declared earlier in the SQLJ program.

That identifier must be declared as an instance of class

sqlj.runtime.ExecutionContext.

 Usage notes:

v If you do not specify a connection context in an executable clause, SQLJ uses the

default connection context.

v If you do not specify an execution context, SQLJ obtains the execution context

from the connection context of the statement.

SQLJ statement-clause

A statement clause contains an SQL statement or a SET TRANSACTION clause.

 Syntax:

�� { SQL-statement }

SET-TRANSACTION-clause
 ��

 Description:

SQL-statement

You can include the DB2 UDB for z/OS SQL statements in Table 42 on page

139 in a statement clause.

 For information on individual SQL statements, see DB2 SQL Reference.

138 Application Programming Guide and Reference for Java™

SET-TRANSACTION-clause

Sets the isolation level for SQL statements in the program and the access mode

for the connection. The SET TRANSACTION clause is equivalent to the SET

TRANSACTION statement, which is described in the ANSI/ISO SQL standard

of 1992 and is supported in some implementations of SQL. See “SQLJ

SET-TRANSACTION-clause” on page 140 for more information.

 Table 42. Valid SQL statements in an SQLJ statement clause

ALTER DATABASE

ALTER FUNCTION

ALTER INDEX

ALTER PROCEDURE

ALTER STOGROUP

ALTER TABLE

ALTER TABLESPACE

CALL

COMMENT ON

COMMIT

CREATE ALIAS

CREATE DATABASE

CREATE DISTINCT TYPE

CREATE FUNCTION

CREATE GLOBAL TEMPORARY TABLE

CREATE INDEX

CREATE PROCEDURE

CREATE STOGROUP

CREATE SYNONYM

CREATE TABLE

CREATE TABLESPACE

CREATE TRIGGER

CREATE VIEW

DECLARE GLOBAL TEMPORARY TABLE

DELETE

DROP ALIAS

DROP DATABASE

DROP DISTINCT TYPE

DROP FUNCTION

DROP INDEX

DROP PACKAGE

DROP PROCEDURE

DROP STOGROUP

DROP SYNONYM

DROP TABLE

DROP TABLESPACE

DROP TRIGGER

DROP VIEW

FETCH

GRANT

INSERT

LOCK TABLE

RENAME (JDBC/SQLJ driver for z/OS only)

REVOKE

ROLLBACK

SAVEPOINT

SELECT INTO

SET CURRENT APPLICATION ENCODING SCHEME

Chapter 4. JDBC and SQLJ reference 139

|

Table 42. Valid SQL statements in an SQLJ statement clause (continued)

SET CURRENT DEGREE

SET CURRENT LOCALE LC_CTYPE

SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION

SET CURRENT OPTIMIZATION HINT

SET CURRENT PACKAGE PATH

SET CURRENT PACKAGESET (USER is not supported)

SET CURRENT PRECISION

SET CURRENT REFRESH AGE

SET CURRENT RULES

SET CURRENT SQLID

SET PATH

SIGNAL SQLSTATE (JDBC/SQLJ driver for z/OS only)

UPDATE

 Usage notes:

v SQLJ supports both positioned and searched DELETE and UPDATE operations.

v For a FETCH statement, a positioned DELETE statement, or a positioned

UPDATE statement, you must use an iterator to refer to rows in a result table.

SQLJ SET-TRANSACTION-clause

The SET TRANSACTION clause sets the isolation level for the current unit of

work.

 Syntax:

�� SET TRANSACTION ISOLATION LEVEL READ COMMITTED

READ UNCOMMITTED

REPEATABLE READ

SERIALIZABLE

 ��

 Description:

ISOLATION LEVEL

Specifies one of the following isolation levels:

READ COMMITTED

Specifies that the current DB2 isolation level is cursor stability.

READ UNCOMMITTED

Specifies that the current DB2 isolation level is uncommitted read.

REPEATABLE READ

Specifies that the current DB2 isolation level is read stability.

SERIALIZABLE

Specifies that the current DB2 isolation level is repeatable read.

 Usage notes:

 You can execute SET TRANSACTION only at the beginning of a transaction.

SQLJ assignment-clause

The assignment clause assigns the result of an SQL operation to a Java variable.

140 Application Programming Guide and Reference for Java™

Syntax:

�� Java-ID = { fullselect }

order-by-clause

optimize-for-clause

isolation-clause

queryno-clause

fetch-first-clause

iterator-conversion-clause

 ��

 Description:

Java-ID

Identifies an iterator that was declared previously as an instance of an iterator

class.

fullselect

Generates a result table.

iterator-conversion-clause

See “SQLJ iterator-conversion-clause” for a description of this clause.

 Usage notes:

v If the object that is identified by Java-ID is a positioned iterator, the number of

columns in the result set must match the number of columns in the iterator. In

addition, the data type of each column in the result set must be compatible with

the data type of the corresponding column in the iterator. See “Java, JDBC, and

SQL data types” on page 127 for a list of compatible Java and SQL data types.

v If the object that is identified by Java-ID is a named iterator, the name of each

accessor method must match, except for case, the name of a column in the result

set. In addition, the data type of the object that an accessor method returns must

be compatible with the data type of the corresponding column in the result set.

v You can put an assignment clause anywhere in a Java program that a Java

assignment statement can appear. However, you cannot put an assignment

clause where a Java assignment expression can appear. For example, you cannot

specify an assignment clause in the control list of a for statement.

SQLJ iterator-conversion-clause

The iterator conversion clause converts a JDBC ResultSet to an iterator.

 Syntax:

�� CAST host-expression ��

 Description:

host-expression

Identifies the JDBC ResultSet that is to be converted to an SQLJ iterator.

 Usage notes:

v If the iterator to which the JDBC ResultSet is to be converted is a positioned

iterator, the number of columns in the ResultSet must match the number of

Chapter 4. JDBC and SQLJ reference 141

columns in the iterator. In addition, the data type of each column in the

ResultSet must be compatible with the data type of the corresponding column

in the iterator.

v If the iterator is a named iterator, the name of each accessor method must match,

except for case, the name of a column in the ResultSet. In addition, the data

type of the object that an accessor method returns must be compatible with the

data type of the corresponding column in the ResultSet.

v When an iterator that is generated through the iterator conversion clause is

closed, the ResultSet from which the iterator is generated is also closed.

sqlj.runtime reference

The sqlj.runtime package defines the run-time classes and interfaces that are used

directly or indirectly by the SQLJ programmer. Classes such as AsciiStream are

used directly by the SQLJ programmer. Interfaces such as ResultSetIterator are

implemented as part of generated class declarations.

Summary of interfaces and classes in the sqlj.runtime

package

Table 43 summarizes the interfaces in sqlj.runtime.

 Table 43. Summary of sqlj.runtime interfaces

Interface name Purpose

ConnectionContext Manages the SQL operations that are performed during a connection to a data

source.

ForUpdate Implemented by iterators that are used in a positioned UPDATE or DELETE

statement.

NamedIterator Implemented by iterators that are declared as named iterators.

PositionedIterator Implemented by iterators that are declared as positioned iterators.

ResultSetIterator Implemented by all iterators to allow query results to be processed using a JDBC

ResultSet.

Scrollable Provides a set of methods for manipulating scrollable iterators.

Table 44 summarizes the classes in sqlj.runtime.

 Table 44. Summary of sqlj.runtime classes

Class name Purpose

AsciiStream A class for handling an input stream whose bytes should be interpreted as ASCII.

BinaryStream A class for handling an input stream whose bytes should be interpreted as binary.

CharacterStream A class for handling an input stream whose bytes should be interpreted as

Character.

DefaultRuntime Implemented by SQLJ to satisfy the expected runtime behavior of SQLJ for most

JVM environments. This class is for internal use only and is not described in this

documentation.

ExecutionContext Implemented when an SQLJ execution context is declared, to control the execution

of SQL operations.

RuntimeContext Defines system-specific services that are provided by the runtime environment. This

class is for internal use only and is not described in this documentation.

142 Application Programming Guide and Reference for Java™

#

#
#
#
#

#

#

#

##

##

##
#

##
#

##

##

##
#

##
#

#

##

##

##

##

##
#

##
#
#

##
#

##
#

Table 44. Summary of sqlj.runtime classes (continued)

Class name Purpose

SQLNullException Derived from the java.sql.SQLException class. An sqlj.runtime.SQLNullException

is thrown when an SQL NULL value is fetched into a host identifier with a Java

primitive type.

StreamWrapper Wraps a java.io.InputStream instance.

UnicodeStream A class for handling an input stream whose bytes should be interpreted as Unicode.

sqlj.runtime.ConnectionContext interface

The sqlj.runtime.ConnectionContext interface provides a set of methods that

manage SQL operations that are performed during a session with a specific data

source. Translation of an SQLJ connection declaration clause causes SQLJ to create

a connection context class. A connection context object maintains a JDBC

Connection object on which dynamic SQL operations can be performed. A

connection context object also maintains a default ExecutionContext object.

Variables:

CLOSE_CONNECTION

Format:

public static final boolean CLOSE_CONNECTION=true;

A constant that can be passed to the close method. It indicates that the

underlying JDBC Connection object should be closed.

KEEP_CONNECTION

Format:

public static final boolean KEEP_CONNECTION=false;

A constant that can be passed to the close method. It indicates that the

underlying JDBC Connection object should not be closed.

Methods that are defined for the interface:

close()

Format:

public abstract void close() throws SQLException

Performs the following functions:

v Releases all resources that are used by the given connection context object

v Closes any open ConnectedProfile objects

v Closes the underlying JDBC Connection object

close() is equivalent to close(CLOSE_CONNECTION).

close(boolean)

Format:

public abstract void close (boolean close-connection)

 throws SQLException

Performs the following functions:

v Releases all resources that are used by the given connection context object

v Closes any open ConnectedProfile objects

v Closes the underlying JDBC Connection object, depending on the value of

the close-connection parameter

Chapter 4. JDBC and SQLJ reference 143

#

##

##
#
#

##

##
#

#

#
#
#
#
#
#

#

#
#

#

#
#

#
#

#

#
#

#

#
#

#

#
#
#
#

#

#
#

#
#

#
#
#
#
#

Parameters:

close-connection

Specifies whether the underlying JDBC Connection object is closed when a

connection context object is closed:

CLOSE_ CONNECTION

Closes the underlying JDBC Connection object.

KEEP_ CONNECTION

Does not close the underlying JDBC Connection object.

getConnectedProfile

Format:

public abstract ConnectedProfile getConnectedProfile(Object profileKey)

 throws SQLException

This method is used by code that is generated by the SQLJ translator. It is not

intended for direct use by application programs.

getConnection

Format:

public abstract Connection getConnection()

Returns the underlying JDBC Connection object for the given connection

context object.

getExecutionContext

Format:

public abstract ExecutionContext getExecutionContect()

Returns the default ExecutionContext object that is associated with the given

connection context object.

isClosed

Format:

public abstract boolean isClosed()

Returns true if the given connection context object has been closed. Returns

false if the connection context object has not been closed.

Constructors in a concrete implementation of the ConnectionContext interface that

results from translation of the statement #sql context Ctx;:

Ctx(String, boolean)

Format:

public Ctx(String url, boolean autocommit)

 throws SQLException

Parameters:

url The representation of a data source, as specified in the JDBC getConnection

method.

autocommit

Whether autocommit is enabled for the connection. A value of true means

that autocommit is enabled. A value of false means that autocommit is

disabled.

Ctx(String, String, String, boolean)

Format:

144 Application Programming Guide and Reference for Java™

#

#
#
#

#
#

#
#

#
#

#
#

#
#

#
#

#

#
#

#
#

#

#
#

#
#

#

#
#

#
#

#
#

#
#

#

##
#

#
#
#
#

#
#

public Ctx(String url, String user, String password,

 boolean autocommit)

 throws SQLException

Parameters:

url The representation of a data source, as specified in the JDBC getConnection

method.

user

The user ID under which the connection to the data source is made.

password

The password for the user ID under which the connection to the data

source is made.

autocommit

Whether autocommit is enabled for the connection. A value of true means

that autocommit is enabled. A value of false means that autocommit is

disabled.

Ctx(String, Properties, boolean)

Format:

public Ctx(String url, Properties info, boolean autocommit)

 throws SQLException

Parameters:

url The representation of a data source, as specified in the JDBC getConnection

method.

info

An object that contains a set of driver properties for the connection. Any of

the DB2 Universal JDBC Driver properties can be specified.

autocommit

Whether autocommit is enabled for the connection. A value of true means

that autocommit is enabled. A value of false means that autocommit is

disabled.

Ctx(Connection)

Format:

public Ctx(java.sql.Connection JDBC-connection-object)

 throws SQLException

Parameters:

JDBC-connection-object

A previously created JDBC Connection object.

If the constructor call throws an SQLException, the JDBC Connection object

remains open.

Ctx(ConnectionContext)

Format:

public Ctx(sqlj.runtime.ConnectionContext SQLJ-connection-context-object)

 throws SQLException

Parameters:

SQLJ-connection-context-object

A previously created SQLJ ConnectionContext object.

Chapter 4. JDBC and SQLJ reference 145

#
#
#

#

##
#

#
#

#
#
#

#
#
#
#

#
#

#
#

#

##
#

#
#
#

#
#
#
#

#
#

#
#

#

#
#

#
#

#
#

#
#

#

#
#

Constructors in a concrete implementation of the ConnectionContext interface that

results from translation of the statement #sql context Ctx with (dataSource

="jdbc/TestDS");:

Ctx()

Format:

public Ctx()

 throws SQLException

Ctx(String, String)

Format:

public Ctx(String user, String password,

)

 throws SQLException

Parameters:

user

The user ID under which the connection to the data source is made.

password

The password for the user ID under which the connection to the data

source is made.

Ctx(Connection)

Format:

public Ctx(java.sql.Connection JDBC-connection-object)

 throws SQLException

Parameters:

JDBC-connection-object

A previously created JDBC Connection object.

If the constructor call throws an SQLException, the JDBC Connection object

remains open.

Ctx(ConnectionContext)

Format:

public Ctx(sqlj.runtime.ConnectionContext SQLJ-connection-context-object)

 throws SQLException

Parameters:

SQLJ-connection-context-object

A previously created SQLJ ConnectionContext object.

Additional methods that are generated in a concrete implementation of the

ConnectionContext interface that results from translation of the statement #sql

context Ctx;:

getDefaultContext

Format:

public static Ctx getDefaultContext()

Returns the default connection context object for the Ctx class.

getProfileKey

Format:

public static Object getProfileKey(sqlj.runtime.profile.Loader loader,

String profileName) throws SQLException

146 Application Programming Guide and Reference for Java™

#
#
#

#
#

#
#

#
#

#
#
#

#

#
#

#
#
#

#
#

#
#

#

#
#

#
#

#
#

#
#

#

#
#

#
#
#

#
#

#

#

#
#

#
#

This method is used by code that is generated by the SQLJ translator. It is not

intended for direct use by application programs.

getProfile

Format:

public static sqlj.runtime.profile.Profile getProfile(Object key)

This method is used by code that is generated by the SQLJ translator. It is not

intended for direct use by application programs.

getTypeMap

Format:

public static java.util.Map getTypeMap()

Returns an instance of a class that implements java.util.Map, which is the

user-defined type map that is associated with the ConnectionContext. If there is

no associated type map, Java null is returned.

 This method is used by code that is generated by the SQLJ translator for

executable clauses and iterator declaration clauses, but it can also be invoked

in an SQLJ application for direct use in JDBC statements.

SetDefaultContext

Format:

public static void Ctx setDefaultContext(Ctx default-context)

Sets the default connection context object for the Ctx class.

 Recommendation: Do not use this method for multithreaded applications.

Instead, use explicit contexts.

sqlj.runtime.ForUpdate interface

SQLJ implements the sqlj.runtime.ForUpdate interface in SQLJ programs that

contain an iterator declaration clause with implements sqlj.runtime.ForUpdate. An

SQLJ program that does positioned UPDATE or DELETE operations

(UPDATE...WHERE CURRENT OF or DELETE...WHERE CURRENT OF) must

include an iterator declaration clause with implements sqlj.runtime.ForUpdate.

Methods:

getCursorName

Format:

public abstract String getCursorName() throws SQLException

This method is used by code that is generated by the SQLJ translator. It is not

intended for direct use by application programs.

sqlj.runtime.NamedIterator interface

The sqlj.runtime.NamedIterator interface is implemented when an SQLJ

application executes an iterator declaration clause for a named iterator. A named

iterator includes result table column names, and the order of the columns in the

iterator is not important.

An implementation of the sqlj.runtime.NamedIterator interface includes an

accessor method for each column in the result table. An accessor method returns

Chapter 4. JDBC and SQLJ reference 147

#
#

#
#

#

#
#

#
#

#

#
#
#

#
#
#

#
#

#

#

#
#

#

#
#
#
#
#

#

#
#

#

#
#

#

#
#
#
#

#
#

the data from its column of the result table. The name of an accessor method

matches the name of the corresponding column in the named iterator.

Methods (inherited from the ResultSetIterator interface):

close

Format:

public abstract void close() throws SQLException

Releases database resources that the iterator uses.

isClosed

Format:

public abstract boolean isClosed() throws SQLException

Returns a value of true if the close method has been invoked. Returns false if

the close method has not been invoked.

next

Format:

public abstract boolean next() throws SQLException

Advances the iterator to the next row. Before an instance of the next method is

invoked for the first time, the iterator is positioned before the first row of the

result table. next returns a value of true when a next row is available and

false when all rows have been retrieved.

sqlj.runtime.PositionedIterator interface

The sqlj.runtime.PositionedIterator interface is implemented when an SQLJ

application executes an iterator declaration clause for a positioned iterator. The

order of columns in a positioned iterator must be the same as the order of columns

in the result table, and a positioned iterator does not include result table column

names.

Methods: sqlj.runtime.PositionedIterator inherits all ResultSetIterator methods,

and includes the following additional method:

endFetch

Format:

public abstract boolean endFetch() throws SQLException

Returns a value of true if the iterator is not positioned on a row. Returns a

value of false if the iterator is positioned on a row.

sqlj.runtime.ResultSetIterator interface

The sqlj.runtime.ResultSetIterator interface is implemented by SQLJ for all

iterator declaration clauses.

An untyped iterator can be generated by declaring an instance of the

sqlj.runtime.ResultSetIterator interface directly. In general, use of untyped

iterators is not recommended.

Variables:

ASENSITIVE

Format:

public static final int ASENSITIVE

148 Application Programming Guide and Reference for Java™

#
#

#

#
#

#

#

#
#

#

#
#

#
#

#

#
#
#
#

#

#
#
#
#
#

#
#

#
#

#

#
#

#

#
#

#
#
#

#

#
#

#

A constant that can be returned by the getSensitivity method. It indicates that

the iterator is defined as ASENSITIVE.

FETCH_FORWARD

Format:

public static final int FETCH_FORWARD

A constant that can be used by the following methods:

v Set by sqlj.runtime.Scrollable.setFetchDirection and

sqlj.runtime.ExecutionContext.setFetchDirection

v Returned by sqlj.runtime.ExecutionContext.getFetchDirection

It indicates that the iterator fetches rows in a result table in the forward

direction, from first to last.

FETCH_REVERSE

Format:

public static final int FETCH_REVERSE

A constant that can be used by the following methods:

v Set by sqlj.runtime.Scrollable.setFetchDirection and

sqlj.runtime.ExecutionContext.setFetchDirection

v Returned by sqlj.runtime.ExecutionContext.getFetchDirection

It indicates that the iterator fetches rows in a result table in the backward

direction, from last to first.

FETCH_UNKNOWN

Format:

public static final int FETCH_UNKNOWN

A constant that can be used by the following methods:

v Set by sqlj.runtime.Scrollable.setFetchDirection and

sqlj.runtime.ExecutionContext.setFetchDirection

v Returned by sqlj.runtime.ExecutionContext.getFetchDirection

It indicates that the iterator fetches rows in a result table in an unknown order.

INSENSITIVE

Format:

public static final int INSENSITIVE

A constant that can be returned by the getSensitivity method. It indicates that

the iterator is defined as INSENSITIVE.

SENSITIVE

Format:

public static final int SENSITIVE

A constant that can be returned by the getSensitivity method. It indicates that

the iterator is defined as SENSITIVE.

clearWarnings

Format:

public abstract void clearWarnings() throws SQLException

After clearWarnings is called, getWarnings returns null until a new warning is

reported for the iterator.

Chapter 4. JDBC and SQLJ reference 149

#
#

#
#

#

#
#
#
#

#
#

#
#

#

#
#
#
#

#
#

#
#

#

#
#
#
#

#

#
#

#

#
#

#
#

#

#
#

#
#

#

#
#

close

Format:

public abstract void close() throws SQLException

Closes the iterator and releases underlying database resources.

getFetchSize

Format:

synchronized public int getFetchSize() throws SQLException

Returns the number of rows that should be fetched by SQLJ when more rows

are needed. The returned value is the value that was set by the setFetchSize

method, or 0 if no value was set by setFetchSize.

getResultSet

Format:

public abstract ResultSet getResultSet() throws SQLException

Returns the JDBC ResultSet object that is associated with the iterator.

getRow

Format:

synchronized public int getRow() throws SQLException

Returns the current row number. The first row is number 1, the second is

number 2, and so on. If the iterator is not positioned on a row, 0 is returned.

getSensitivity

Format:

synchronized public int getSensitivity() throws SQLException

Returns the sensitivity of the iterator. The sensitivity is determined by the

sensitivity value that was specified or defaulted in the with clause of the

iterator declaration clause.

getWarnings

Format:

public abstract SQLWarning getWarnings() throws SQLException

Returns the first warning that is reported by calls on the iterator. Subsequent

iterator warnings are be chained to this SQLWarning. The warning chain is

automatically cleared each time the iterator moves to a new row.

isClosed

Format:

public abstract boolean isClosed() throws SQLException

Returns a value of true if the iterator is closed. Returns false otherwise.

next

Format:

public abstract boolean next() throws SQLException

Advances the iterator to the next row. Before next is invoked for the first time,

the iterator is positioned before the first row of the result table. next returns a

value of true when a next row is available and false when all rows have been

retrieved.

150 Application Programming Guide and Reference for Java™

#
#

#

#

#
#

#

#
#
#

#
#

#

#

#
#

#

#
#

#
#

#

#
#
#

#
#

#

#
#
#

#
#

#

#

#
#

#

#
#
#
#

setFetchSize

Format:

synchronized public void setFetchSize(int number-of-rows) throws SQLException

Gives SQLJ a hint as to the number of rows that should be fetched when more

rows are needed.

 Parameters:

number-of-rows

The expected number of rows that SQLJ should fetch for the iterator that is

associated with the given execution context.

If number-of-rows is less than 0 or greater than the maximum number of rows

that can be fetched, an SQLException is thrown.

sqlj.runtime.Scrollable interface

sqlj.runtime.Scrollable is implemented when a scrollable iterator is declared.

sqlj.runtime.Scrollable provides methods to move around in the result table and

to check the position in the result table.

absolute(int)

Format:

public abstract boolean absolute (int n) throws SQLException

Moves the iterator to a specified row.

 If n>0, positions the iterator on row n of the result table. If n<0, and m is the

number of rows in the result table, positions the iterator on row m+n+1 of the

result table.

 If the absolute value of n is greater than the number of rows in the result table,

positions the cursor after the last row if n is positive, or before the first row if

n is negative.

 Absolute(0) is the same as beforeFirst(). Absolute(1) is the same as first().

Absolute(-1) is the same as last().

 Returns true if the iterator is on a row. Otherwise, returns false.

afterLast()

Format:

public abstract void afterLast() throws SQLException

Moves the iterator after the last row of the result table.

beforeFirst()

Format:

public abstract void beforeFirst() throws SQLException

Moves the iterator before the first row of the result table.

first()

Format:

public abstract boolean first() throws SQLException

Moves the iterator to the first row of the result table.

Chapter 4. JDBC and SQLJ reference 151

#
#

#

#
#

#

#
#
#

#
#

#

#
#
#

#
#

#

#

#
#
#

#
#
#

#
#

#

#
#

#

#

#
#

#

#

#
#

#

#

Returns true if the iterator is on a row. Otherwise, returns false.

getFetchDirection()

Format:

public abstract int getFetchDirection() throws SQLException

Returns the fetch direction of the iterator. Possible values are:

sqlj.runtime.ResultSetIterator.FETCH_FORWARD

Rows are processed in a forward direction, from first to last.

sqlj.runtime.ResultSetIterator.FETCH_REVERSE

Rows are processed in a backward direction, from last to first.

sqlj.runtime.ResultSetIterator.FETCH_UNKNOWN

The order of processing is not known.

isAfterLast()

Format:

public abstract boolean isAfterLast() throws SQLException

Returns true if the iterator is positioned after the last row of the result table.

Otherwise, returns false.

isBeforeFirst()

Format:

public abstract boolean isBeforeFirst() throws SQLException

Returns true if the iterator is positioned before the first row of the result table.

Otherwise, returns false.

isFirst()

Format:

public abstract boolean isFirst() throws SQLException

Returns true if the iterator is positioned on the first row of the result table.

Otherwise, returns false.

isLast()

Format:

public abstract boolean isLast() throws SQLException

Returns true if the iterator is positioned on the last row of the result table.

Otherwise, returns false.

last()

Format:

public abstract boolean last() throws SQLException

Moves the iterator to the last row of the result table.

 Returns true if the iterator is on a row. Otherwise, returns false.

previous()

Format:

public abstract boolean previous() throws SQLException

Moves the iterator to the previous row of the result table.

 Returns true if the iterator is on a row. Otherwise, returns false.

152 Application Programming Guide and Reference for Java™

#

#
#

#

#

#
#

#
#

#
#

#
#

#

#
#

#
#

#

#
#

#
#

#

#
#

#
#

#

#
#

#
#

#

#

#

#
#

#

#

#

relative(int)

Format:

public abstract boolean relative(int n) throws SQLException

If n>0, positions the iterator on the row that is n rows after the current row. If

n<0, positions the iterator on the row that is n rows before the current row. If

n=0, positions the iterator on the current row.

 The cursor must be on a valid row of the result table before you can use this

method. If the cursor is before the first row or after the last throw, the method

throws an SQLException.

 Suppose that m is the number of rows in the result table and x is the current

row number in the result table. If n>0 and x+n>m, the the iterator is positioned

after the last row. If n<0 and x+n<1, the iterator is positioned before the first

row.

 Returns true if the iterator is on a row. Otherwise, returns false.

setFetchDirection(int)

Format:

public abstract void setFetchDirection (int) throws SQLException

Gives the SQLJ runtime environment a hint as to the direction in which rows

of this iterator object are processed. Possible values are:

sqlj.runtime.ResultSetIterator.FETCH_FORWARD

Rows are processed in a forward direction, from first to last.

sqlj.runtime.ResultSetIterator.FETCH_REVERSE

Rows are processed in a backward direction, from last to first.

sqlj.runtime.ResultSetIterator.FETCH_UNKNOWN

The order of processing is not known.

sqlj.runtime.AsciiStream class

The sqlj.runtime.AsciiStream class is for an input stream of ASCII data with a

specified length. The sqlj.runtime.AsciiStream class is derived from the

java.io.InputStream class, and extends the sqlj.runtime.StreamWrapper class.

SQLJ interprets the bytes in an sqlj.runtime.AsciiStream object as ASCII

characters. An InputStream object with ASCII characters needs to be passed as a

sqlj.runtime.AsciiStream object.

Constructors:

AsciiStream(InputStream)

Format:

public AsciiStream(java.io.InputStream input-stream)

Creates an ASCII java.io.InputStream object with an unspecified length.

 Parameters:

input-stream

The InputStream object that SQLJ interprets as an AsciiStream object.

AsciiStream(InputStream, int)

Format:

Chapter 4. JDBC and SQLJ reference 153

#
#

#

#
#
#

#
#
#

#
#
#
#

#

#
#

#

#
#

#
#

#
#

#
#

#

#
#
#
#
#
#

#

#
#

#

#

#

#
#

#
#

public AsciiStream(java.io.InputStream input-stream, int length)

Creates an ASCII java.io.InputStream object with a specified length.

 Parameters:

input-stream

The InputStream object that SQLJ interprets as an AsciiStream object.

length

The length of the InputStream object that SQLJ interprets as an

AsciiStream object.

sqlj.runtime.BinaryStream class

The sqlj.runtime.BinaryStream class is for an input stream of binary data with a

specified length. The sqlj.runtime.BinaryStream class is derived from the

java.io.InputStream class, and extends the sqlj.runtime.StreamWrapper class. SQLJ

interprets the bytes in an sqlj.runtime.BinaryStream object are interpreted as

Binary characters. An InputStream object with Binary characters needs to be passed

as a sqlj.runtime.BinaryStream object.

Constructors:

BinaryStream(InputStream)

Format:

public BinaryStream(java.io.InputStream input-stream)

Creates an Binary java.io.InputStream object with an unspecified length.

 Parameters:

input-stream

The InputStream object that SQLJ interprets as an BinaryStream object.

BinaryStream(InputStream, int)

Format:

public BinaryStream(java.io.InputStream input-stream, int length)

Creates an Binary java.io.InputStream object with a specified length.

 Parameters:

input-stream

The InputStream object that SQLJ interprets as an BinaryStream object.

length

The length of the InputStream object that SQLJ interprets as an

BinaryStream object.

sqlj.runtime.CharacterStream class

The sqlj.runtime.CharacterStream class is for an input stream of character data

with a specified length. The sqlj.runtime.CharacterStream class is derived from

the java.io.Reader class, and extends the java.io.FilterReader class. SQLJ

interprets the bytes in an sqlj.runtime.CharacterStream object are interpreted as

Unicode data. A Reader object with Unicode data needs to be passed as a

sqlj.runtime.CharacterStream object.

Constructors:

154 Application Programming Guide and Reference for Java™

#

#

#

#
#

#
#
#

#

#
#
#
#
#
#

#

#
#

#

#

#

#
#

#
#

#

#

#

#
#

#
#
#

#

#
#
#
#
#
#

#

CharacterStream(InputStream)

Format:

public CharacterStream(java.io.Reader input-stream)

Creates a character java.io.Reader object with an unspecified length.

 Parameters:

input-stream

The Reader object that SQLJ interprets as an CharacterStream object.

CharacterStream(InputStream, int)

Format:

public CharacterStream(java.io.Reader input-stream, int length)

Creates a character java.io.Reader object with a specified length.

 Parameters:

input-stream

The Reader object that SQLJ interprets as an CharacterStream object.

length

The length of the Reader object that SQLJ interprets as an CharacterStream

object.

Methods:

getReader

Format:

public Reader getReader()

Returns the underlying Reader object that is wrapped by the CharacterStream

object.

getLength

Format:

public void getLength()

Returns the length in characters of the wrapped Reader object, as specified by

the constructor or in the last call to setLength.

setLength

Format:

public void setLength (int length)

Sets the number of characters that are read from the Reader object when the

object is passed as an input argument to an SQL operation.

 Parameters:

length

The number of characters that are read from the Reader object.

sqlj.runtime.ExecutionContext class

The sqlj.runtime.ExecutionContext class is defined for execution contexts. Use an

execution context to control the execution of SQL statements.

Variables:

Chapter 4. JDBC and SQLJ reference 155

#
#

#

#

#

#
#

#
#

#

#

#

#
#

#
#
#

#

#
#

#

#
#

#
#

#

#
#

#
#

#

#
#

#

#
#

#

#
#

#

ADD_BATCH_COUNT

Format:

public static final int ADD_BATCH_COUNT

A constant that can be returned by the getUpdateCount method. It indicates

that the previous statement was not executed but was added to the existing

statement batch.

AUTO_BATCH

Format:

public static final int AUTO_BATCH

A constant that can be passed to the setBatchLimit method. It indicates that

implicit batch execution should be performed, and that SQLJ should determine

the batch size.

EXEC_BATCH_COUNT

Format:

public static final int EXEC_BATCH_COUNT

A constant that can be returned from the getUpdateCount method. It indicates

that a statement batch was just executed.

EXCEPTION_COUNT

Format:

public static final int EXCEPTION_COUNT

A constant that can be returned from the getUpdateCount method. It indicates

that an exception was thrown before the previous execution completed, or that

no operation has been performed on the execution context object.

NEW_BATCH_COUNT

Format:

public static final int NEW_BATCH_COUNT

A constant that can be returned from the getUpdateCount method. It indicates

that the previous statement was not executed, but was added to a new

statement batch.

QUERY_COUNT

Format:

public static final int QUERY_COUNT

A constant that can be passed to the setBatchLimit method. It indicates that the

previous execution produced a result set.

UNLIMITED_BATCH

Format:

public static final int UNLIMITED_BATCH

A constant that can be returned from the getUpdateCount method. It indicates

that statements should continue to be added to a statement batch, regardless of

the batch size.

Constructors:

ExecutionContext

Format:

156 Application Programming Guide and Reference for Java™

#
#

#

#
#
#

#
#

#

#
#
#

#
#

#

#
#

#
#

#

#
#
#

#
#

#

#
#
#

#
#

#

#
#

#
#

#

#
#
#

#

#
#

public ExecutionContext()

Creates an ExecutionContext instance.

Methods:

cancel

Format:

public void cancel() throws SQLException

Cancels an SQL operation that is currently being executed by a thread that

uses the execution context object. If there is a pending statement batch on the

execution context object, the statement batch is canceled and cleared.

 The cancel method throws an SQLException if the statement cannot be

canceled.

execute

Format:

public boolean execute () throws SQLException

This method is used by code that is generated by the SQLJ translator. It is not

intended for direct use by application programs.

executeBatch

Format:

public synchronized int[] executeBatch() throws SQLException

Executes the pending statement batch and returns an array of update counts. If

no pending statement batch exists, null is returned. When this method is

called, the statement batch is cleared, even if the call results in an exception.

 Each element in the returned array can be one of the following values:

-2 This value indicates that the SQL statement executed successfully, but the

number of rows that were updated could not be determined.

-3 This value indicates that the SQL statement failed.

Other integer

This value is the number of rows that were updated by the statement.

 The executeBatch method throws an SQLException if a database error occurs

while the statement batch executes.

executeQuery

Format:

public RTResultSet executeQuery () throws SQLException

This method is used by code that is generated by the SQLJ translator. It is not

intended for direct use by application programs.

executeUpdate

Format:

public int executeUpdate() throws SQLException

This method is used by code that is generated by the SQLJ translator. It is not

intended for direct use by application programs.

Chapter 4. JDBC and SQLJ reference 157

#

#

#

#
#

#

#
#
#

#
#

#
#

#

#
#

#
#

#

#
#
#

#

##
#

##

#
#

#
#

#
#

#

#
#

#
#

#

#
#

getBatchLimit

Format:

synchronized public int getBatchLimit()

Returns the number of statements that are added to a batch before the batch is

implicitly executed.

 The returned value is one of the following values:

UNLIMITED_BATCH

This value indicates that the batch size is unlimited.

AUTO_BATCH

This value indicates that the batch size is finite but unknown.

Other integer

The current batch limit.

getBatchUpdateCounts

Format:

public synchronized int[] getBatchUpdateCounts()

Returns an array that contains the number of rows that were updated by each

statement that successfully executed in a batch. The order of elements in the

array corresponds to the order in which statements were inserted into the

batch. Returns null if no statements in the batch completed successfully.

 Each element in the returned array can be one of the following values:

-2 This value indicates that the SQL statement executed successfully, but the

number of rows that were updated could not be determined.

-3 This value indicates that the SQL statement failed.

Other integer

This value is the number of rows that were updated by the statement.

getFetchDirection

Format:

synchronized public int getFetchDirection() throws SQLException

Returns the current fetch direction for scrollable iterator objects that were

generated from the given execution context. If a fetch direction was not set for

the execution context, sqlj.runtime.ResultSetIterator.FETCH_FORWARD is

returned.

getFetchSize

Format:

synchronized public int getFetchSize() throws SQLException

Returns the number of rows that should be fetched by SQLJ when more rows

are needed. This value applies only to iterator objects that were generated from

the given execution context. The returned value is the value that was set by the

setFetchSize method, or 0 if no value was set by setFetchSize.

getMaxFieldSize

Format:

public synchronized int getMaxFieldSize()

158 Application Programming Guide and Reference for Java™

#
#

#

#
#

#

#
#

#
#

#
#

#
#

#

#
#
#
#

#

##
#

##

#
#

#
#

#

#
#
#
#

#
#

#

#
#
#
#

#
#

#

Returns the maximum number of bytes that are returned for any string

(character, graphic, or varying-length binary) column in queries that use the

given execution context. If this limit is exceeded, SQLJ discards the remaining

bytes. A value of 0 means that the maximum number of bytes is unlimited.

getMaxRows

Format:

public synchronized int getMaxRows()

Returns the maximum number of rows that are returned for any query that

uses the given execution context. If this limit is exceeded, SQLJ discards the

remaining rows. A value of 0 means that the maximum number of rows is

unlimited.

getNextResultSet()

Format:

public ResultSet getNextResultSet() throws SQLException

After a stored procedure call, returns a result set from the stored procedure.

 A null value is returned if any of the following conditions are true:

v There are no more result sets to be returned.

v The stored procedure call did not produce any result sets.

v A stored procedure call has not been executed under the execution context.

When you invoke getNextResultSet(), SQLJ closes the currently-open result

set and advances to the next result set.

 If an error occurs during a call to getNextResultSet, resources for the current

JDBC ResultSet object are released, and an SQLException is thrown.

Subsequent calls to getNextResultSet return null.

getNextResultSet(int)

Formats:

public ResultSet getNextResultSet(int current)

After a stored procedure call, returns a result set from the stored procedure.

 A null value is returned if any of the following conditions are true:

v There are no more result sets to be returned.

v The stored procedure call did not produce any result sets.

v A stored procedure call has not been executed under the execution context.

If an error occurs during a call to getNextResultSet, resources for the current

JDBC ResultSet object are released, and an SQLException is thrown.

Subsequent calls to getNextResultSet return null.

 getNextResultSet(int current) requires JDK 1.4 or later.

 Parameters:

current

Indicates what SQLJ does with the currently open result set before it

advances to the next result set:

Chapter 4. JDBC and SQLJ reference 159

#
#
#
#

#
#

#

#
#
#
#

#
#

#

#

#

#

#

#

#
#

#
#
#

#
#

#

#

#

#

#

#

#
#
#

#

#

#
#
#

java.sql.Statement.CLOSE_CURRENT_RESULT

Specifies that the current ResultSet object is closed when the next

ResultSet object is returned.

java.sql.Statement.KEEP_CURRENT_RESULT

Specifies that the current ResultSet object stays open when the next

ResultSet object is returned.

java.sql.Statement.CLOSE_ALL_RESULTS

Specifies that all open ResultSet objects are closed when the next

ResultSet object is returned.

getQueryTimeout

Format:

public synchronized int getQueryTimeout()

Returns the maximum number of seconds that SQL operations that use the

given execution context object can execute. If an SQL operation exceeds the

limit, an SQLException is thrown. The returned value is the value that was set

by the setQueryTimeout method, or 0 if no value was set by setQueryTimeout.

0 means that execution time is unlimited.

getUpdateCount

Format:

public abstract int getUpdateCount() throws SQLException

Returns:

ExecutionContext.ADD_BATCH_COUNT

If the statement was added to an existing batch.

ExecutionContext.NEW_BATCH_COUNT

If the statement was the first statement in a new batch.

ExecutionContext.EXCEPTION_COUNT

If the previous statement generated an SQLException, or no previous

statement was executed.

ExecutionContext.EXEC_BATCH_COUNT

If the statement was part of a batch, and the batch was executed.

ExecutionContext.QUERY_COUNT

If the previous statement created an iterator object or JDBC ResultSet.

Other integer

If the statement was executed rather than added to a batch. This value is

the number of rows that were updated by the statement.

getWarnings

Format:

public synchronized SQLWarning getWarnings()

Returns the first warning that was reported by the last SQL operation that was

executed using the given execution context. Subsequent warnings are chained

to the first warning. If no warnings occurred, null is returned.

 getWarnings is used to retrieve positive SQLCODEs.

isBatching

Format:

public synchronized boolean isBatching()

160 Application Programming Guide and Reference for Java™

#
#
#

#
#
#

#
#
#

#
#

#

#
#
#
#
#

#
#

#

#

#
#

#
#

#
#
#

#
#

#
#

#
#
#

#
#

#

#
#
#

#

#
#

#

Returns true if batching is enabled for the execution context. Returns false if

batching is disabled.

registerStatement

Format:

public RTStatement registerStatement(ConnectionContext connCtx,

 Object profileKey, int stmtNdx)

 throws SQLException

This method is used by code that is generated by the SQLJ translator. It is not

intended for direct use by application programs.

releaseStatement

Format:

public void releaseStatement() throws SQLException

This method is used by code that is generated by the SQLJ translator. It is not

intended for direct use by application programs.

setBatching

Format:

public synchronized void setBatching(boolean batching)

Parameters:

batching

Indicates whether batchable statements that are registered with the given

execution context can be added to a statement batch:

true

Statements can be added to a statement batch.

false

Statements are executed individually.

 setBatching affects only statements that occur in the program after setBatching

is called. It does not affect previous statements or an existing statement batch.

setBatchLimit

Format:

public synchronized void setBatchLimit(int batch-size)

Sets the maximum number of statements that are added to a batch before the

batch is implicitly executed.

 Parameters:

batch-size

One of the following values:

ExecutionContext.UNLIMITED_BATCH

Indicates that implicit execution occurs only when SQLJ encounters a

statement that is batchable but incompatible, or not batchable. Setting

this value is the same as not invoking setBatchLimit.

ExecutionContext.AUTO_BATCH

Indicates that implicit execution occurs when the number of statements

in the batch reaches a number that is set by SQLJ.

Positive integer

The number of statements that are added to the batch before SQLJ

Chapter 4. JDBC and SQLJ reference 161

#
#

#
#

#
#
#

#
#

#
#

#

#
#

#
#

#

#

#
#
#

#
#

#
#

#
#

#
#

#

#
#

#

#
#

#
#
#
#

#
#
#

#
#

executes the batch implicitly. The batch might be executed before this

many statements have been added if SQLJ encounters a statement that

is batchable but incompatible, or not batchable.

setBatchLimit affects only statements that occur in the program after

setBatchLimit is called. It does not affect an existing statement batch.

setFetchDirection

Format:

public synchronized void setFetchDirection(int direction) throws SQLException

Gives SQLJ a hint as to the current fetch direction for scrollable iterator objects

that were generated from the given execution context.

 Parameters:

direction

One of the following values:

sqlj.runtime.ResultSetIterator.FETCH_FORWARD

Rows are fetched in a forward direction. This is the default.

sqlj.runtime.ResultSetIterator.FETCH_REVERSE

Rows are fetched in a backward direction.

sqlj.runtime.ResultSetIterator.FETCH_UNKNOWN

The order of fetching is unknown.

Any other input value results in an SQLException.

setFetchSize

Format:

synchronized public void setFetchSize(int number-of-rows) throws SQLException

Gives SQLJ a hint as to the number of rows that should be fetched when more

rows are needed.

 Parameters:

number-of-rows

The expected number of rows that SQLJ should fetch for the iterator that is

associated with the given execution context.

If number-of-rows is less than 0 or greater than the maximum number of rows

that can be fetched, an SQLException is thrown.

setMaxFieldSize

Format:

public void setMaxFieldSize(int max-bytes)

Specifies the maximum number of bytes that are returned for any string

(character, graphic, or varying-length binary) column in queries that use the

given execution context. If this limit is exceeded, SQLJ discards the remaining

bytes.

 Parameters:

max-bytes

The maximum number of bytes that SQLJ should return from a character,

162 Application Programming Guide and Reference for Java™

#
#
#

#
#

#
#

#

#
#

#

#
#

#
#

#
#

#
#

#

#
#

#

#
#

#

#
#
#

#
#

#
#

#

#
#
#
#

#

#
#

graphic, or varying-length binary column. A value of 0 means that the

number of bytes is unlimited. 0 is the default.

setMaxRows

Format:

public synchronized void setMaxRows(int max-rows)

Specifies the maximum number of rows that are returned for any query that

uses the given execution context. If this limit is exceeded, SQLJ discards the

remaining rows.

 Parameters:

max-rows

The maximum number of rows that SQLJ should return for a query that

uses the given execution context. A value of 0 means that the number of

rows is unlimited. 0 is the default.

setQueryTimeout

Format:

public synchronized void setQueryTimeout(int timeout-value)

Specifies the maximum number of seconds that SQL operations that use the

given execution context object can execute. If an SQL operation exceeds the

limit, an SQLException is thrown.

 Parameters:

timeout-value

The maximum number of seconds that SQL operations that use the given

execution context object can execute. 0 means that execution time is

unlimited. 0 is the default.

sqlj.runtime.SQLNullException class

The sqlj.runtime.SQLNullException class is derived from the

java.sql.SQLException class. An sqlj.runtime.SQLNullException is thrown when

an SQL NULL value is fetched into a host identifier with a Java primitive type. The

SQLSTATE value for an instance of SQLNullException is '22002'.

sqlj.runtime.StreamWrapper class

The sqlj.runtime.StreamWrapper class wraps a java.io.InputStream instance and

extends the java.io.InputStream class. The sqlj.runtime.AsciiStream,

sqlj.runtime.BinaryStream, and sqlj.runtime.UnicodeStream classes extend

sqlj.runtime.StreamWrapper. sqlj.runtime.StreamWrapper supports methods for

specifying the length of sqlj.runtime.AsciiStream, sqlj.runtime.BinaryStream,

and sqlj.runtime.UnicodeStream objects.

Constructors:

StreamWrapper(InputStream)

Format:

protected StreamWrapper(InputStream input-stream)

Creates an sqlj.runtime.StreamWrapper object with an unspecified length.

 Parameters:

Chapter 4. JDBC and SQLJ reference 163

#
#

#
#

#

#
#
#

#

#
#
#
#

#
#

#

#
#
#

#

#
#
#
#

#

#
#
#
#

#

#
#
#
#
#
#

#

#
#

#

#

#

input-stream

The InputStream object that the sqlj.runtime.StreamWrapper object wraps.

StreamWrapper(InputStream, int)

Format:

protected StreamWrapper(java.io.InputStream input-stream, int length)

Creates an sqlj.runtime.StreamWrapper object with a specified length.

 Parameters:

input-stream

The InputStream object that the sqlj.runtime.StreamWrapper object wraps.

length

The length of the InputStream object in bytes.

Methods:

getInputStream

Format:

public InputStream getInputStream()

Returns the underlying InputStream object that is wrapped by the

StreamWrapper object.

getLength

Format:

public void getLength()

Returns the length in bytes of the wrapped InputStream object, as specified by

the constructor or in the last call to setLength.

setLength

Format:

public void setLength (int length)

Sets the number of bytes that are read from the wrapped InputStream object

when the object is passed as an input argument to an SQL operation.

 Parameters:

length

The number of bytes that are read from the wrapped InputStream object.

sqlj.runtime.UnicodeStream class

The sqlj.runtime.UnicodeStream class is for an input stream of Unicode data with

a specified length. The sqlj.runtime.UnicodeStream class is derived from the

java.io.InputStream class, and extends the sqlj.runtime.StreamWrapper class. SQLJ

interprets the bytes in an sqlj.runtime.UnicodeStream object as Unicode

characters. An InputStream object with Unicode characters needs to be passed as a

sqlj.runtime.UnicodeStream object.

Constructors:

UnicodeStream(InputStream)

Format:

public UnicodeStream(java.io.InputStream input-stream)

164 Application Programming Guide and Reference for Java™

#
#

#
#

#

#

#

#
#

#
#

#

#
#

#

#
#

#
#

#

#
#

#
#

#

#
#

#

#
#

#

#
#
#
#
#
#

#

#
#

#

Creates a Unicode java.io.InputStream object with an unspecified length.

 Parameters:

input-stream

The InputStream object that SQLJ interprets as an UnicodeStream object.

UnicodeStream(InputStream, int)

Format:

public UnicodeStream(java.io.InputStream input-stream, int length)

Creates a Unicode java.io.InputStream object with a specified length.

 Parameters:

input-stream

The InputStream object that SQLJ interprets as an UnicodeStream object.

length

The length of the InputStream object that SQLJ interprets as an

UnicodeStream object.

DB2 Universal JDBC Driver reference information

The following topics contain information that is specific to the DB2 Universal JDBC

Driver:

v “DB2 Universal JDBC Driver extensions to JDBC”

v “JDBC differences between the DB2 Universal JDBC Driver and other DB2 JDBC

drivers” on page 179

v “SQLJ differences between the DB2 Universal JDBC Driver and other DB2 JDBC

drivers” on page 182

v “Error codes issued by the DB2 Universal JDBC Driver” on page 183

v “SQLSTATEs issued by the DB2 Universal JDBC Driver” on page 183

v “How to find DB2 Universal JDBC Driver version and environment information”

on page 184

v “Properties for the DB2 Universal JDBC Driver” on page 185

DB2 Universal JDBC Driver extensions to JDBC

This topic describes the JDBC APIs that are specific to the DB2 Universal JDBC

Driver.

To use any of the methods that are described in this topic, you must cast an

instance of the related, standard JDBC class to an instance of the DB2-only class.

For example:

javax.sql.DataSource ds =

 new com.ibm.db2.jcc.DB2SimpleDataSource();

((com.ibm.db2.jcc.DB2BaseDataSource) ds).setServerName("sysmvs1.stl.ibm.com");

 DB2BaseDataSource class:

The com.ibm.db2.jcc.DB2BaseDataSource class is the abstract data source parent

class for all DB2-specific implementations of javax.sql.DataSource,

javax.sql.ConnectionPoolDataSource, and javax.sql.XADataSource.

DB2BaseDataSource properties:

Chapter 4. JDBC and SQLJ reference 165

#

#

#
#

#
#

#

#

#

#
#

#
#
#

The following properties are defined only for the DB2 Universal JDBC Driver. See

“Properties for the DB2 Universal JDBC Driver” on page 185 for explanations of

these properties.

Each of these properties has a setXXX method to set the value of the property and

a getXXX method to retrieve the value. A setXXX method has this form:

void setProperty-name(data-type property-value)

A getXXX method has this form:

data-type getProperty-name()

Property-name is the unqualified property name, with the first character capitalized.

Table 45 lists the DB2 Universal JDBC Driver properties and their data types. See

“Properties for the DB2 Universal JDBC Driver” on page 185 for definitions of

these properties.

 Table 45. DB2 Universal JDBC Driver properties and their data types

Property name Data type

com.ibm.db2.jcc.DB2BaseDataSource.accountingInterval String

com.ibm.db2.jcc.DB2BaseDataSource.clientAccountingInformation String

com.ibm.db2.jcc.DB2BaseDataSource.clientApplicationInformation String

com.ibm.db2.jcc.DB2BaseDataSource.clientProgramName String

com.ibm.db2.jcc.DB2BaseDataSource.clientRerouteServerListJNDIName String

com.ibm.db2.jcc.DB2BaseDataSource.clientUser String

com.ibm.db2.jcc.DB2BaseDataSource.clientWorkstation String

com.ibm.db2.jcc.DB2BaseDataSource.cliSchema String

com.ibm.db2.jcc.DB2BaseDataSource.currentFunctionPath String

com.ibm.db2.jcc.DB2BaseDataSource.currentMaintainedTableTypesForOptimization String

com.ibm.db2.jcc.DB2BaseDataSource.currentPackagePath String

com.ibm.db2.jcc.DB2BaseDataSource.currentQueryOptimization int

com.ibm.db2.jcc.DB2BaseDataSource.currentRefreshAge long

com.ibm.db2.jcc.DB2BaseDataSource.cursorSensitivity int

com.ibm.db2.jcc.DB2BaseDataSource.currentSchema String

com.ibm.db2.jcc.DB2BaseDataSource.currentSQLID String

com.ibm.db2.jcc.DB2BaseDataSource.currentSQLID String

com.ibm.db2.jcc.DB2BaseDataSource.databaseName String

com.ibm.db2.jcc.DB2BaseDataSource.deferPrepares boolean

com.ibm.db2.jcc.DB2BaseDataSource.description String

com.ibm.db2.jcc.DB2BaseDataSource.driverType int

com.ibm.db2.jcc.DB2BaseDataSource.fullyMaterializeLobData boolean

com.ibm.db2.jcc.DB2BaseDataSource.gssCredential Object

com.ibm.db2.jcc.DB2BaseDataSource.jdbcCollection String

com.ibm.db2.jcc.DB2BaseDataSource.keepDynamic int

com.ibm.db2.jcc.DB2BaseDataSource.kerberosServerPrincipal String

com.ibm.db2.jcc.DB2BaseDataSource.logWriter PrintWriter

166 Application Programming Guide and Reference for Java™

##

##

||

||

##

##

##

||

||

Table 45. DB2 Universal JDBC Driver properties and their data types (continued)

Property name Data type

com.ibm.db2.jcc.DB2BaseDataSource.portNumber int

com.ibm.db2.jcc.DB2BaseDataSource.queryCloseImplicit int

com.ibm.db2.jcc.DB2BaseDataSource.readOnly boolean

com.ibm.db2.jcc.DB2BaseDataSource.resultSetHoldability int

com.ibm.db2.jcc.DB2BaseDataSource.securityMechanism int

com.ibm.db2.jcc.DB2BaseDataSource.sendDataAsIs boolean

com.ibm.db2.jcc.DB2BaseDataSource.serverName String

com.ibm.db2.jcc.DB2BaseDataSource.supportsAsynchronousXARollback int

com.ibm.db2.jcc.DB2BaseDataSource.traceDirectory String

com.ibm.db2.jcc.DB2BaseDataSource.traceFile String

com.ibm.db2.jcc.DB2BaseDataSource.traceLevel int

com.ibm.db2.jcc.DB2BaseDataSource.user String

com.ibm.db2.jcc.DB2BaseDataSource.useTargetColumnEncoding boolean

DB2BaseDataSource methods:

In addition to the getXXX and setXXX methods for the DB2BaseDataSource

properties, the following methods are defined only for the DB2 Universal JDBC

Driver.

getReference

Format:

public javax.naming.Reference getReference()

 throws javax.naming.NamingException

Retrieves the Reference of a DataSource object. For an explanation of a

Reference, see the description of javax.naming.Referenceable in the JNDI

documentation at:

http://java.sun.com/products/jndi/docs.html

 DB2Connection interface:

The com.ibm.db2.jcc.DB2Connection interface extends the java.sql.Connection

interface.

DB2Connection methods:

The following methods are defined only for the DB2 Universal JDBC Driver.

getDB2ClientProgramId

Format:

public String getDB2ClientProgramId()

 throws SQLException

Returns the user-defined program identifier for the client. The program

identifier can be used to identify the application at the database server.

getDB2ClientAccountingInformation

Format:

Chapter 4. JDBC and SQLJ reference 167

##

##

##

||

##

#
#

#
#

#
#

public String getDB2ClientAccountingInformation()

 throws SQLException

Returns accounting information for the current client.

getDB2ClientApplicationInformation

Format:

public String getDB2ClientApplicationInformation()

 throws SQLException

Returns application information for the current client.

getDB2ClientUser

Format:

public String getDB2ClientUser()

 throws SQLException

Returns the current client user name for the connection. This name is not the

user value for the JDBC connection.

getDB2ClientWorkstation

Format:

public String getDB2ClientWorkstation()

 throws SQLException

Returns current client workstation name for the current client.

getDB2Correlator

Format:

String getDB2Correlator()

 throws java.sql.SQLException

Returns the value of the crrtkn (correlation token) instance variable that DRDA

sends with the ACCRDB command. The correlation token uniquely identifies a

logical connection to a server.

getDB2CurrentPackagePath

Format:

public String getDB2CurrentPackagePath()

 throws SQLException

Returns the list of DB2 package collections that are searched for the DB2

Universal JDBC Driver packages.

getDB2CurrentPackageSet

Format:

public String getDB2CurrentPackageSet()

 throws SQLException

Returns the collection ID for the connection.

getDB2SystemMonitor

Format:

public abstract DB2SystemMonitor getDB2SystemMonitor()

 throws SQLException

Returns the system monitor object for the connection. Each DB2 Universal

JDBC Driver connection can have a single system monitor. See

“DB2SystemMonitor interface” on page 176 for more information.

168 Application Programming Guide and Reference for Java™

#
#

#
#

#
#
#

|
|

|
|

|
|
|

getJccLogWriter

Format:

public PrintWriter getJccLogWriter()

 throws SQLException

Returns the current trace destination for the DB2 Universal JDBC Driver trace.

installDB2JavaStoredProcedure

Format:

void DB2Connection.installDB2JavaStoredProcedure(java.io.InputStream jarFile,

 int jarFileLength, String jarId)

Invokes the SQLJ.DB2_INSTALL_JAR stored procedure on a DB2 UDB for

z/OS server to create a new definition of a JAR file in the DB2 catalog for that

server.

isDB2GatewayConnection

Format:

boolean DB2Connection.isDB2GatewayConnection()

 throws java.sql.SQLException

Returns true if the connection to the server goes through an intermediate DB2

Connect gateway. Returns false otherwise.

replaceDB2JavaStoredProcedure

Format:

void DB2Connection.replaceDB2JavaStoredProcedure(java.io.InputStream jarFile,

 int jarFileLength, String jarId)

 throws SQLException

Invokes the SQLJ.DB2_REPLACE_JAR stored procedure on a DB2 UDB for

z/OS server to replace a definition of a JAR file in the DB2 catalog for that

server.

resetDB2Connection

Format:

public void resetDB2Connection(String user, String password,

 DB2BaseDataSource ds)

 throws SQLException

void DB2Connection.resetDB2Connection()

 throws SQLException

Reopens a physical connection for immediate reuse. The first form of

resetDB2Connection reopens the connection with a new user ID, password, and

connection properties. The second form of resetDB2Connection the connection

with the same user ID, password, and connection properties.

setDB2ClientAccountingInformation

Format:

public void setDB2ClientAccountingInformation(String info)

 throws SQLException

Specifies accounting information for the connection. This information is for

client accounting purposes. This value can change during a connection.

 setDB2ClientAccountingInformation sets the value in the CLIENT ACCTNG

special register.

 Parameter description:

Chapter 4. JDBC and SQLJ reference 169

#
#

#
#

#
#
#

#
#

#
#

#
#

#
#

#
#
#

#
#
#

#
#

#
#
#
#
#

#
#
#
#

info

User-specified accounting information. The maximum length depends on

the server. For a DB2 UDB for OS/390 or z/OS server, the maximum

length is 22 bytes. A Java empty string ("") is valid for this parameter

value, but a Java null value is not valid.

setDB2ClientApplicationInformation

Format:

public void setDB2ClientApplicationInformation(String info)

 throws SQLException

Specifies application information for the connection. This information is for

client accounting purposes. This value can change during a connection.

 setDB2ClientApplicationInformation sets the value in the CLIENT

APPLNAME special register.

 Parameter description:

info

User-specified application information. The maximum length depends on

the server. For a DB2 UDB for OS/390 or z/OS server, the maximum

length is 32 bytes. A Java empty string ("") is valid for this parameter

value, but a Java null value is not valid.

setDB2ClientProgramId

Format:

public abstract void setDB2ClientProgramId(String program-ID)

 throws java.sql.SQLException

Sets a user-defined program identifier for the client. The program identifier can

be used to identify the application at the database server.

setDB2ClientUser

Format:

public void setDB2ClientUser(String user)

 throws SQLException

Specifies the current client user name for the connection. This name is for

client accounting purposes, and is not the user value for the JDBC connection.

Unlike the user for the JDBC connection, the current client user name can

change during a connection.

 setDB2ClientUser sets the value in the CLIENT USERID special register.

 Parameter description:

user

The user ID for the current client.The maximum length depends on the

server. For a DB2 UDB for OS/390 or z/OS server, the maximum length is

16 bytes. A Java empty string ("") is valid for this parameter value, but a

Java null value is not valid.

setDB2ClientWorkstation

Format:

public void setDB2ClientWorkstation(String name)

 throws SQLException

170 Application Programming Guide and Reference for Java™

#
#

#
#

#
#

Specifies the current client workstation name for the connection. This name is

for client accounting purposes. The current client workstation name can change

during a connection.

 setDB2ClientWorkstation sets the value in the CLIENT WRKSTNNAME

special register.

 Parameter description:

name

The workstation name for the current client.The maximum length depends

on the server. For a DB2 UDB for OS/390 or z/OS server, the maximum

length is 18 bytes. A Java empty string ("") is valid for this parameter

value, but a Java null value is not valid.

setDB2CurrentPackagePath

Format:

public void setDB2CurrentPackagePath(String packagePath)

 throws SQLException

Specifies a list of collection IDs that DB2 searches for the DB2 Universal JDBC

Driver DB2 packages.

 Parameter description:

packagePath

A comma-separated list of collection IDs.

setDB2CurrentPackageSet

Format:

public void setDB2CurrentPackageSet(String packageSet)

 throws SQLException

Specifies the collection ID for the connection. When you set this value, you

also set the collection ID of the DB2 Universal JDBC Driver instance that is

used for the connection.

 Parameter description:

packageSet

The collection ID for the connection. The maximum length for the

packageSet value is 18 bytes. You can invoke this method as an alternative

to executing the SQL SET CURRENT PACKAGESET statement in your

program.

setJccLogWriter

Formats:

public void setJccLogWriter(PrintWriter logWriter)

 throws SQLException

public void setJccLogWriter(PrintWriter logWriter, int traceLevel)

 throws SQLException

Enables or disables the DB2 Universal JDBC Driver trace, or changes the trace

destination during an active connection.

 Parameter descriptions:

Chapter 4. JDBC and SQLJ reference 171

logWriter

An object of type java.io.PrintWriter to which the DB2 Universal JDBC

Driver writes trace output. To turn off the trace, set the value of logWriter

to null.

traceLevel

Specifies the types of traces to collect. See the description of the traceLevel

property in “Properties for the DB2 Universal JDBC Driver” on page 185

for valid values.

 DB2Diagnosable interface:

The com.ibm.db2.jcc.DB2Diagnosable interface provides a mechanism for getting

DB2 diagnostics from a DB2 SQLException.

DB2Diagnosable methods:

The following methods are defined only for the DB2 Universal JDBC Driver.

getSqlca

Format:

public DB2Sqlca getSqlca()

Returns a DB2Sqlca object from a java.sql.Exception that is produced under a

DB2 Universal JDBC Driver.

getThrowable

Format:

public Throwable getThrowable()

Returns a java.lang.Throwable object from a java.sql.Exception that is

produced under a DB2 Universal JDBC Driver.

printTrace

Format:

static public void printTrace(java.io.PrintWriter printWriter,

 String header)

Prints diagnostic information after a java.sql.Exception is thrown under a

DB2 Universal JDBC Driver.

 Parameter descriptions:

printWriter

The destination for the diagnostic information.

header

User-defined information that is printed at the beginning of the output.

 DB2ExceptionFormatter class:

The com.ibm.db2.jcc.DB2ExceptionFormatter class contains methods for printing

diagnostic information to a stream.

DB2ExceptionFormatter methods:

The following methods are defined only for the DB2 Universal JDBC Driver.

172 Application Programming Guide and Reference for Java™

printTrace

Formats:

static public void printTrace(java.sql.SQLException sqlException,

 java.io.PrintWriter printWriter, String header)

static public void printTrace(DB2Sqlca sqlca,

 java.io.PrintWriter printWriter, String header)

static public void printTrace(java.lang.Throwable throwable,

 java.io.PrintWriter printWriter, String header)

Prints diagnostic information after an exception is thrown.

 Parameter descriptions:

sqlException|sqlca|throwable

The exception that was thrown during a previous JDBC or Java operation.

printWriter

The destination for the diagnostic information.

header

User-defined information that is printed at the beginning of the output.

 DB2JccDataSource interface:

The com.ibm.db2.jcc.DB2JccDataSource interface can be used to distinguish

between com.ibm.db2.jcc.DB2BaseDataSource instances for the DB2 Universal

JDBC Driver and com.ibm.db2.jcc.DB2BaseDataSource instances for the

JDBC/SQLJ Driver for OS/390 and z/OS. If a DataSource instance implements

com.ibm.db2.jcc.DB2JccDataSource, it is a DB2 Universal JDBC Driver DataSource

instance. Otherwise, it is an JDBC/SQLJ Driver for OS/390 and z/OS DataSource

instance.

 DB2PreparedStatement interface:

The com.ibm.db2.jcc.DB2PreparedStatement interface extends the

com.ibm.db2.jcc.DB2Statement and java.sql.PreparedStatement interfaces.

DB2PreparedStatement methods:

The following methods are defined only for the DB2 Universal JDBC Driver.

executeDB2QueryBatch

Format:

public void executeDB2QueryBatch()

 throws java.sql.SQLException

Executes a statement batch that contains queries with parameters.

 DB2RowID interface:

The com.ibm.db2.jcc.DB2RowID interface is used for declaring Java objects for use

with the DB2 ROWID data type.

DB2RowID methods:

The following method is defined only for the DB2 Universal JDBC Driver.

Chapter 4. JDBC and SQLJ reference 173

#

#

#
#

#

#

#
#

#
#

#

|

|
|

|

|

getBytes

Format:

public byte[] getBytes()

Converts a com.ibm.jcc.DB2RowID object to bytes.

 DB2SimpleDataSource class:

The com.ibm.db2.jcc.DB2SimpleDataSource class extends the DataBaseDataSource

class. A DataBaseDataSource object does not support connection pooling or

distributed transactions. It contains all of the properties and methods that the

DB2BaseDataSource class contains. In addition, DB2SimpleDataSource contains the

following DB2 Universal JDBC Driver-only properties.

DB2SimpleDataSource properties:

The following property is defined only for the DB2 Universal JDBC Driver. See

“Properties for the DB2 Universal JDBC Driver” on page 185 for an explanation of

this property.

 String com.ibm.db2.jcc.DB2SimpleDataSource.password

DB2SimpleDataSource methods:

The following method is defined only for the DB2 Universal JDBC Driver.

setPassword

Format:

public void setPassword(String password)

Sets the password for the DB2SimpleDataSource object. There is no

corresponding getPassword method. Therefore, the password cannot be

encrypted because there is no way to retrieve the password so that you can

decrypt it.

 DB2Sqlca class:

The com.ibm.db2.jcc.DB2Sqlca class is an encapsulation of the DB2 SQLCA. For an

explanation of the SQLCA fields, see DB2 SQL Reference.

DB2Sqlca methods:

The following methods are defined only for the DB2 Universal JDBC Driver.

getMessage

Format:

public abstract String getMessage()

Returns error message text.

getSqlCode

Format:

public abstract int getSqlCode()

Returns an SQL error code value.

getSqlErrd

Format:

174 Application Programming Guide and Reference for Java™

|
|

|

|

public abstract int[] getSqlErrd()

Returns an array, each element of which contains an SQLCA SQLERRD.

getSqlErrmc

Format:

public abstract String getSqlErrmc()

Returns a string that contains the SQLCA SQLERRMC values, delimited with

spaces.

getSqlErrmcTokens

Format:

public abstract String[] getSqlErrmcTokens()

Returns an array, each element of which contains an SQLCA SQLERRMC

token.

getSqlErrd

Format:

public abstract int[] getSqlErrd()

Returns an array, each element of which contains an SQLCA SQLERRP value.

getSqlErrp

Format:

public abstract String getSqlErrp()

Returns the SQLCA SQLERRP value.

getSqlState

Format:

public abstract String getSqlState()

Returns the SQLCA SQLSTATE value.

getSqlWarn

Format:

public abstract char[] getSqlWarn()

Returns an array, each element of which contains an SQLCA SQLWARN value.

 DB2Statement interface:

The com.ibm.db2.jcc.DB2Statement interface extends the java.sql.Statement

interface.

DB2Statement methods:

The following methods are defined only for the DB2 Universal JDBC Driver.

getDB2ClientProgramId

Format:

public String getDB2ClientProgramId()

 throws SQLException

Returns the user-defined program identifier for the client. The program

identifier can be used to identify the application at the database server.

Chapter 4. JDBC and SQLJ reference 175

#

#
#

#

#

#
#

#
#

#
#

setDB2ClientProgramId

Format:

public abstract void setDB2ClientProgramId(String program-ID)

 throws java.sql.SQLException

Sets a user-defined program identifier for the client. The program identifier can

be used to identify the application at the database server.

 DB2SystemMonitor interface:

The com.ibm.db2.jcc.DB2SystemMonitor interface is used for collecting system

monitoring data for a connection. Each connection can have one DB2SystemMonitor

instance.

DB2SystemMonitor fields:

The following fields are defined only for the DB2 Universal JDBC Driver.

public final static int RESET_TIMES

public final static int ACCUMULATE_TIMES

These values are arguments for the DB2SystemMonitor.start method.

RESET_TIMES sets time counters to zero before monitoring starts.

ACCUMULATE_TIMES does not set time counters to zero.

 DB2SystemMonitor methods:

The following methods are defined only for the DB2 Universal JDBC Driver.

enable

Format:

public void enable(boolean on)

 throws java.sql.SQLException

Enables the system monitor that is associated with a connection. This method

cannot be called during monitoring. All times are reset when enable is

invoked.

getApplicationTimeMillis

Format:

public long getApplicationTimeMillis()

 throws java.sql.SQLException

Returns the sum of the application, JDBC driver, network I/O, and DB2 server

elapsed times. The time is in milliseconds.

 A monitored elapsed time interval is the difference, in milliseconds, between

these points in the JDBC driver processing:

Interval beginning

When start is called.

Interval end

When stop is called.

 getApplicationTimeMillis returns 0 if system monitoring is disabled. Calling

this method without first calling the stop method results in an SQLException.

getCoreDriverTimeMicros

Format:

176 Application Programming Guide and Reference for Java™

#
#

#
#

#
#

|

|
|
|

|

|

|
|
|
|
|

|

|

|
|

|
|

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

public long getCoreDriverTimeMicros()

 throws java.sql.SQLException

Returns the sum of elapsed monitored API times that were collected while

system monitoring was enabled. The time is in microseconds.

 A monitored API is a JDBC driver method for which processing time is

collected. In general, elapsed times are monitored only for APIs that might

result in network I/O or DB2 server interaction. For example,

PreparedStatement.setXXX methods and ResultSet.getXXX methods are not

monitored.

 Monitored API elapsed time includes the total time that is spent in the driver

for a method call. This time includes any network I/O time and DB2 server

elapsed time.

 A monitored API elapsed time interval is the difference, in microseconds,

between these points in the JDBC driver processing:

Interval beginning

When a monitored API is called by the application.

Interval end

Immediately before the monitored API returns control to the application.

 getCoreDriverTimeMicros returns 0 if system monitoring is disabled. Calling

this method without first calling the stop method, or calling this method when

the underlying JVM does not support reporting times in microseconds results

in an SQLException.

getNetworkIOTimeMicros

Format:

public long getNetworkIOTimeMicros()

 throws java.sql.SQLException

Returns the sum of elapsed network I/O times that were collected while

system monitoring was enabled. The time is in microseconds.

 Elapsed network I/O time includes the time to write and read DRDA data

from network I/O streams. A network I/O elapsed time interval is the time

interval to perform the following operations in the JDBC driver:

v Issue a TCP/IP command to send a DRDA message to the DB2 server. This

time interval is the difference, in microseconds, between points immediately

before and after a write and flush to the network I/O stream is performed.

v Issue a TCP/IP command to receive DRDA reply messages from the DB2

server. This time interval is the difference, in microseconds, between points

immediately before and after a read on the network I/O stream is

performed.

Network I/O time intervals are captured for all send and receive operations,

including the sending of messages for commits and rollbacks.

 The time spent waiting for network I/O might be impacted by delays in CPU

dispatching at the DB2 server for low-priority SQL requests. Network I/O time

intervals include DB2 server elapsed time.

Chapter 4. JDBC and SQLJ reference 177

|
|

|
|

|
|
|
|
|

|
|
|

|
|

|
|

|
|

|
|
|
|

|
|

|
|

|
|

|
|
|

|
|
|

|
|
|
|

|
|

|
|
|

getNetworkIOTimeMicros returns 0 if system monitoring is disabled. Calling this

method without first calling the stop method, or calling this method when the

underlying JVM does not support reporting times in microseconds results in an

SQLException.

getServerTimeMicros

Format:

public long getServerTimeMicros()

 throws java.sql.SQLException

Returns the sum of all reported DB2 server elapsed times that were collected

while system monitoring was enabled. The time is in microseconds.

 The DB2 server reports elapsed times under these conditions:

v The server supports returning elapsed time data to the client.

Currently, DB2 UDB for Linux, UNIX and Windows servers do not support

this function.

v The server performs operations that can be monitored. For example, DB2

server elapsed time is not returned for commits or rollbacks.

DB2 server elapsed time is defined as the elapsed time to parse the request

data stream, process the command, and generate the reply data stream at the

server. Network time to receive or send the data stream is not included.

 a DB2 server elapsed time interval is the difference, in microseconds, between

these points in the server processing:

Interval beginning

When the operating system dispatches DB2 to process a TCP/IP message

that is received from the JDBC driver.

Interval end

When DB2 is ready to issue the TCP/IP command to return the reply

message to the client.

 getServerTimeMicros returns 0 if system monitoring is disabled. Calling this

method without first calling the stop method results in an SQLException.

start

Format:

public void start (int lapMode)

 throws java.sql.SQLException

If the system monitor is enabled, start begins the collection of system

monitoring data for a connection. Valid values for lapMode are RESET_TIMES

or ACCUMULATE_TIMES.

 Calling this method with system monitoring disabled does nothing. Calling

this method more than once without an intervening stop call results in an

SQLException.

stop

Format:

public void stop()

 throws java.sql.SQLException

178 Application Programming Guide and Reference for Java™

|
|
|
|

|
|

|
|

|
|

|

|

#
#

|
|

|
|
|

|
|

|
|
|

|
|
|

|
|

|
|

|
|

|
|
|

|
|
|

|
|

|
|

If the system monitor is enabled, stop ends the collection of system monitoring

data for a connection. After monitoring is stopped, monitored times can be

obtained with the getXXX methods of DB2SystemMonitor.

 Calling this method with system monitoring disabled does nothing. Calling

this method without first calling start, or calling this method more than once

without an intervening start call results in an SQLException.

JDBC differences between the DB2 Universal JDBC Driver and

other DB2 JDBC drivers

The DB2 Universal JDBC Driver differs from the JDBC/SQLJ Driver for OS/390

and z/OS in the following areas:

 Supported methods:

 The DB2 Universal JDBC Driver supports a number of JDBC methods that the

other drivers do not support, and does not support several methods that the other

drivers support. For details, see “Comparison of driver support for JDBC APIs” on

page 107.

 Support for scrollable and updatable ResultSets:

 The DB2 Universal JDBC Driver supports scrollable and updatable ResultSets.

The JDBC/SQLJ driver for z/OS support only non-scrollable and non-updatable

ResultSets.

 Difference in URL syntax:

 The syntax of the url parameter in the DriverManager.getConnection method is

different for each driver. See the following topics for more information:

v “Connecting to a data source using the DriverManager interface with the DB2

Universal JDBC Driver” on page 10

v “Connecting to a data source using the DriverManager interface with a

JDBC/SQLJ Driver for OS/390 and z/OS” on page 54

 Difference in error codes and SQLSTATEs returned for driver errors:

 The DB2 Universal JDBC Driver does not use existing SQLCODEs or SQLSTATEs

for internal errors, as the other drivers do. See “Error codes issued by the DB2

Universal JDBC Driver” on page 183 and “SQLSTATEs issued by the DB2

Universal JDBC Driver” on page 183.

The JDBC/SQLJ driver for z/OS return SQLSTATE FFFFF when internal errors

occur.

 Security mechanisms:

 The JDBC drivers have different security mechanisms.

For information on DB2 Universal JDBC Driver security mechanisms, see“Security

under the DB2 Universal JDBC Driver” on page 289.

For information on security mechanisms for the JDBC/SQLJ driver for z/OS, see

“Security under the JDBC/SQLJ Driver for OS/390 and z/OS” on page 298.

Chapter 4. JDBC and SQLJ reference 179

|
|
|

|
|
|

How connection properties are set:

 With Universal Driver type 4 connectivity, you set properties for a connection by

setting the properties for the associated DataSource or Connection object.

With Universal Driver type 2 connectivity, you set properties for a connection in

one of these ways:

v You can set properties only for a connection by setting the properties for the

associated DataSource or Connection object.

v You can set driver-wide properties through an optional run-time properties file.

For the JDBC/SQLJ driver for z/OS, you set properties through the JDBC/SQLJ

run-time properties file.

 Support for read-only connections:

 With the DB2 Universal JDBC Driver, you can make a connection read-only

through the readOnly property for a Connection or DataSource object.

The JDBC/SQLJ driver for z/OS does not support read-only connections.

 Results returned from ResultSet.getString for a BIT DATA column:

 The DB2 Universal JDBC Driver returns data from a ResultSet.getString call for a

CHAR FOR BIT DATA or VARCHAR FOR BIT DATA column as a lowercase

hexadecimal string.

The JDBC/SQLJ 2.0 Driver for OS/390 and z/OS returns the data in the encoding

scheme of the caller.

 When an exception is thrown for PreparedStatement.setXXXStream with a length

mismatch:

 When you use the PreparedStatement.setBinaryStream ,

PreparedStatement.setCharacterStream, or PreparedStatement.setUnicodeStream

method, the length parameter value must match the number of bytes in the input

stream.

If the numbers of bytes do not match, the DB2 Universal JDBC Driver does not

throw an exception until the subsequent PreparedStatement.executeUpdate method

executes. Therefore, for the DB2 Universal JDBC Driver, some data might be sent

to the server when the lengths to not match. That data is truncated or padded by

the server. The calling application needs to issue a rollback request to undo the

database updates that include the truncated or padded data.

The JDBC/SQLJ 2.0 Driver for OS/390 and z/OS throws an exception after the

PreparedStatement.setBinaryStream, PreparedStatement.setCharacterStream, or

PreparedStatement.setUnicodeStream method executes.

 Default mappings for PreparedStatement.setXXXStream:

 With the DB2 Universal JDBC Driver, when you use the

PreparedStatement.setBinaryStream , PreparedStatement.setCharacterStream, or

180 Application Programming Guide and Reference for Java™

PreparedStatement.setUnicodeStream method, and no information about the data

type of the target column is available, the input data is mapped to a BLOB or

CLOB data type.

For the JDBC/SQLJ driver for z/OS, the input data is mapped to a VARCHAR

FOR BIT DATA or VARCHAR data type.

 How character conversion is done:

 When character data is transferred between a client and a server, the data must be

converted to a form that the receiver can process.

For the DB2 Universal JDBC Driver, character data that is sent from the database

server to the client is converted using Java’s built-in character converters. The

conversions that the DB2 Universal JDBC Driver supports are limited to those that

are supported by the underlying JRE implementation.

A DB2 Universal JDBC Driver client using type 4 connectivity sends data to the

database server as Unicode UTF-8.

The conversions that the JDBC/SQLJ driver for z/OS and the DB2 Universal JDBC

Driver with type 2 connectivity support are also limited to those that are

supported by the underlying JRE implementation.

Those drivers use CCSID information from the database server if it is available.

The drivers convert input parameter data to the CCSID of the database server

before sending the data. If target CCSID information is not available, the drivers

send the data as Unicode UTF-8.

 Implicit or explicit data type conversion for input parameters:

 If you execute a PreparedStatement.setXXX method, and the resulting data type

from the setXXX method does not match the data type of the table column to

which the parameter value is assigned, the driver returns an error unless data type

conversion occurs.

With the DB2 Universal JDBC Driver, conversion to the correct SQL data type

occurs implicitly if the target data type is known and if the deferPrepares and

sendDataAsIs connection properties are set to false. In this case, the implicit

values override any explicit values in the setXXX call. If the deferPrepares

connection property or the sendDataAsIs connection property is set to true, you

must use the PreparedStatement.setObject method to convert the parameter to the

correct SQL data type.

For the JDBC/SQLJ driver for z/OS, if the data type of a parameter does not

match its default SQL data type, you must use the PreparedStatement.setObject

method to convert the parameter to the correct SQL data type.

 Result of using getBoolean to retrieve a value from a CHAR column:

 With the DB2 Universal JDBC Driver, when you execute ResultSet.getBoolean or

CallableStatement.getBoolean to retrieve a Boolean value from a CHAR column,

and the column contains the value ″false″ or ″0″, the value false is returned. If the

column contains any other value, true is returned.

Chapter 4. JDBC and SQLJ reference 181

#
#
#
#
#
#
#

With the JDBC/SQLJ driver for z/OS, when you execute ResultSet.getBoolean or

CallableStatement.getBoolean to retrieve a Boolean value from a CHAR column,

and the column contains the value ″0″, the value false is returned. If the column

contains any other value, true is returned.

 Internal use of LOB locators by the JDBC drivers:

 The DB2 Universal JDBC Driver uses LOB locators internally under the following

circumstances:

v Always, for fetching data from scrollable cursors

v Never, for fetching data from stored procedure output parameters

v If the fullyMaterializeLobData connection property is set to false, in all other

cases

The JDBC/SQLJ 2.0 Driver for OS/390 and z/OS does not use LOB locators.

SQLJ differences between the DB2 Universal JDBC Driver and

other DB2 JDBC drivers

SQLJ support in the DB2 Universal JDBC Driver differs from SQLJ support in the

other DB2 JDBC drivers in the following areas:

 Connection associated with the default connection context:

 If you are using the DataSource interface to connect to a data source, before you

can use a default connection context, the logical name jdbc/defaultDataSource

must be registered with JNDI. The JDBC/SQLJ 2.0 Driver for OS/390 and z/OS

creates a connection to the local data source for the default connection context.

 Production of DBRMs during SQLJ program preparation:

 The SQLJ program preparation process for the DB2 Universal JDBC Driver does

not produce DBRMs. Therefore, with the DB2 Universal JDBC Driver, you can

produce DB2 packages only by using the DB2 Universal JDBC Driver utilities.

 Difference in connection techniques:

 The connection techniques that are available, and the driver names and URLs that

are used for those connection techniques, vary from driver to driver. See

“Connecting to a data source using SQLJ” on page 66 for more information.

 Support for scrollable and updatable iterators:

 SQLJ with the DB2 Universal JDBC Driver supports scrollable and updatable

iterators.

The JDBC/SQLJ driver for z/OS support only non-scrollable and non-updatable

iterators.

 Dynamic execution of SQL statements under WebSphere Application Server:

 With the DB2 Universal JDBC Driver, if you are using a version of WebSphere

Application Server for z/OS and OS/390 before version 5.0.2, all SQL statements in

an SQLJ program are executed dynamically, regardless of whether you customize

182 Application Programming Guide and Reference for Java™

|

|

|
|
|

the SQLJ program. For WebSphere Application Server for z/OS and OS/390

Version 5.0.2 and above, if you customize your SQLJ program, SQL statements are

executed statically.

Error codes issued by the DB2 Universal JDBC Driver

Error codes in the ranges +4200 to +4299, +4450 to +4499, -4200 to -4299, and -4450

to -4499 are reserved for the DB2 Universal JDBC Driver. Currently, the DB2

Universal JDBC Driver issues the following error codes:

 Table 46. Error codes issued by the DB2 Universal JDBC Driver

Error Code Explanation

-4200 An application that was in a global transaction in an XA environment issued a

commit or rollback. A commit or rollback operation in a global transaction is

invalid.

-4201 An application that was in a global transaction in an XA environment executed

the setAutoCommit(true) statement. Issuing setAutoCommit(true) in a global

transaction is invalid.

-4203 An error occurred on an XA connection during execution of an SQL statement.

For network optimization, the DB2 Universal JDBC Driver delays some XA

flows until the next SQL statement is executed. If an error occurs in a delayed

XA flow, that error is reported as part of the SQLException that is thrown by

the current SQL statement.

-4497 The application must issue a rollback. The unit of work has already been rolled

back in the DB2 server, but other resource managers involved in the unit of

work might not have rolled back their changes. To ensure integrity of the

application, all SQL requests are rejected until the application issues a rollback.

-4498 A connection failed but was reestablished. The host name or IP address is

\host-name\ and the service name or port number is port. Any DB2 special

registers that were modified during the original connection are reestablished.

-4499 A fatal error occurred that resulted in a disconnect.

-99999 The DB2 Universal JDBC Driver issued an error that does not yet have an error

code.

SQLSTATEs issued by the DB2 Universal JDBC Driver

SQLSTATEs in the range 46600 to 466ZZ are reserved for the DB2 Universal JDBC

Driver. Currently, the DB2 Universal JDBC Driver returns a null SQLSTATE value

for an internal error, unless the error is a DRDA error. The following SQLSTATEs

are issued for DRDA errors:

08004 The application server rejected establishment of the connection.

22021 A character is not in the coded character set.

24501 The identified cursor is not open.

2D521 SQL COMMIT or ROLLBACK are invalid in the current operating

environment.

58008 Execution failed due to a distribution protocol error that will not affect the

successful execution of subsequent DDM commands or SQL statements.

58009 Execution failed due to a distribution protocol error that caused

deallocation of the conversation.

58010 Execution failed due to a distribution protocol error that will affect the

successful execution of subsequent DDM commands or SQL statements.

Chapter 4. JDBC and SQLJ reference 183

|
|
|

58014 The DDM command is not supported.

58015 The DDM object is not supported.

58016 The DDM parameter is not supported.

58017 The DDM parameter value is not supported.

How to find DB2 Universal JDBC Driver version and

environment information

To determine the version of the DB2 Universal JDBC Driver, as well as information

about the environment in which the driver is running, run the DB2Jcc utility on

the UNIX System Services command line.

 DB2Jcc syntax:

�� java com.ibm.db2.jcc.DB2Jcc

-version

-configuration

-help
 ��

 DB2Jcc option descriptions:

-version

Specifies that the DB2 Universal JDBC Driver displays its name and version.

-configuration

Specifies that the DB2 Universal JDBC Driver displays its name and version,

and information about its environment, such as information about the Java

runtime environment, operating system, path information, and license

restrictions.

-help

Specifies that the DB2Jcc utility describes each of the options that it supports. If

any other options are specified with -help, they are ignored.

 DB2Jcc sample output:

 The following output is the result of invoking DB2Jcc with the -configuration

parameter.

184 Application Programming Guide and Reference for Java™

#

#

#
#
#

#
#

##############################

#
#
#

#
#

#
#
#
#
#

#
#
#

#

#
#
#

Properties for the DB2 Universal JDBC Driver

Properties define how the connection to a particular data source should be made.

Unless otherwise noted, properties can be set for a DataSource object or for a

Connection object. Properties can be set in one of the following ways:

v Using setXXX methods

Properties are applicable to the following DB2-specific implementations that

inherit from com.ibm.db2.jcc.DB2BaseDataSource:

– com.ibm.db2.jcc.DB2SimpleDataSource

– com.ibm.db2.jcc.DB2ConnectionPoolDataSource

– com.ibm.db2.jcc.DB2XADataSource

See “DB2 Universal JDBC Driver extensions to JDBC” on page 165 for a

summary of the property names and data types.

v In a java.util.Properties value in the info parameter of a

DriverManager.getConnection call, as shown in “Connecting to a data source

using the DriverManager interface with the DB2 Universal JDBC Driver” on

page 10.

(myid@mymachine) /home/myid $ java com.ibm.db2.jcc.DB2Jcc -version

IBM DB2 JDBC Universal Driver Architecture 2.1.29 Test Build

(myid@mymachine) /home/myid $ java com.ibm.db2.jcc.DB2Jcc -configuration

[ibm][db2][jcc] BEGIN TRACE_DRIVER_CONFIGURATION

[ibm][db2][jcc] Driver: IBM DB2 JDBC Universal Driver Architecture 2.1.29 Test Build

[ibm][db2][jcc] Compatible JRE versions: { 1.3, 1.4 }

[ibm][db2][jcc][ibm][db2][jcc] Target server licensing restrictions: { z/OS: disabled; SQLDS: disabl

ed; iSeries: disabled; DB2 for Unix/Windows: disabled; Cloudscape:disabled }

[ibm][db2][jcc] Range checking enabled: true

[ibm][db2][jcc] Bug check level: 0xff

[ibm][db2][jcc] Default fetch size: 64

[ibm][db2][jcc] Default isolation: 2

[ibm][db2][jcc] Collect performance statistics: false

[ibm][db2][jcc] No security manager detected.

[ibm][db2][jcc] Detected local client host: mymachine/9.99.99.999

[ibm][db2][jcc] Access to package sun.io is permitted by security manager.

[ibm][db2][jcc] JDBC 1 system property jdbc.drivers = null

[ibm][db2][jcc] Java Runtime Environment version 1.3.1

[ibm][db2][jcc] Java Runtime Environment vendor = IBM Corporation

[ibm][db2][jcc] Java vendor URL = http://www.ibm.com/

[ibm][db2][jcc] Java installation directory = /wsdb/v81/bldsupp/AIX/jdk1.3.1/jre

[ibm][db2][jcc] Java Virtual Machine specification version = 1.0

[ibm][db2][jcc] Java Virtual Machine specification vendor = Sun Microsystems Inc.

[ibm][db2][jcc] Java Virtual Machine specification name = Java Virtual Machine Specification

[ibm][db2][jcc] Java Virtual Machine implementation version = 1.3.1

[ibm][db2][jcc] Java Virtual Machine implementation vendor = IBM Corporation

[ibm][db2][jcc] Java Virtual Machine implementation name = Classic VM

[ibm][db2][jcc] Java Runtime Environment specification version = 1.3

[ibm][db2][jcc] Java Runtime Environment specification vendor = Sun Microsystems Inc.

[ibm][db2][jcc] Java Runtime Environment specification name = Java Platform API Specification

[ibm][db2][jcc] Java class format version number = 46.0

[ibm][db2][jcc] Java class path = .:/home/myid/sqllib/java/db2jcc.jar:/home/myid/sqllib/java/db2

java.zip:/home/myid/sqllib/java/sqlj.zip:/home/myid/sqllib/java/runtime.zip:/wsdb/v81/bldsupp/AI

X/jdk1.3.1/jdbc2.0_stdext/jdbc2_0-stdext.jar:/wsdb/v81/bldsupp/AIX/jdk1.3.1/jta1.0.1/jta-spec1_0_1.j

ar:/wsdb/v81/bldsupp/AIX/jdk1.3.1/jndi1.2/lib/jndi.jar:/home/myid/util:./test:/home/myid/build/c

ur/engn/lib/db2jcc_license_cisuz.jar:/home/myid/build/cur/engn/lib/db2jcc_license_cu.jar

[ibm][db2][jcc] Java native library path = /wsdb/v81/bldsupp/AIX/jdk1.3.1/jre/bin:/wsdb/v81/bldsupp/

AIX/jdk1.3.1/jre/bin/classic:/home/myid/sqllib/lib:/local/cobol:/usr/lib

[ibm][db2][jcc] Path of extension directory or directories = /wsdb/v81/bldsupp/AIX/jdk1.3.1/jre/lib/

ext

[ibm][db2][jcc] Operating system name = AIX

[ibm][db2][jcc] Operating system architecture = ppc

[ibm][db2][jcc] Operating system version = 4.3

[ibm][db2][jcc] File separator ("/" on UNIX) = /

[ibm][db2][jcc] Path separator (":" on UNIX) = :

[ibm][db2][jcc] User’s account name = myid

[ibm][db2][jcc] User’s home directory = /home/myid

[ibm][db2][jcc] User’s current working directory = /home/myid

[ibm][db2][jcc] END TRACE_DRIVER_CONFIGURATION

(myid@mymachine) /home/myid $

Figure 62. Sample DB2Jcc output

Chapter 4. JDBC and SQLJ reference 185

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

v In a java.lang.String value in the url parameter of a

DriverManager.getConnection call, as shown in “Connecting to a data source

using the DriverManager interface with the DB2 Universal JDBC Driver” on

page 10.

The properties are:

accountingInterval

Specifies whether DB2 accounting records are produced at commit points or on

termination of the physical connection to the data source. The data type of this

property is String. If the value of accountingInterval is "COMMIT", DB2

accounting records are produced at commit points. Otherwise, accounting

records are produced on termination of the physical connection to the data

source.

 accountingInterval applies only to Universal Driver type 2 connectivity on DB2

UDB for z/OS. accountingInterval is not applicable to connections under CICS

or IMS, or for Java stored procedures.

 The accountingInterval property overrides the db2.jcc.accountingInterval

configuration property.

clientAccountingInformation

Specifies accounting information for the current client for the connection. This

information is for client accounting purposes. This value can change during a

connection. The data type of this property is String. For a DB2 UDB for

OS/390 or z/OS server, the maximum length is 22 bytes. A Java empty string

("") is valid for this value, but a Java null value is not valid.

clientProgramName

Specifies an application ID that is fixed for the duration of a physical

connection for a client. The value of this property becomes the correlation ID

on a DB2 UDB for z/OS server. Database administrators can use this property

to correlate work on a DB2 UDB for z/OS server to client applications. The

data type of this property is String. The maximum length is 12 bytes. If this

value is null, the DB2 Universal JDBC Driver supplies a value of

db2jccthread-name.

clientUser

Specifies the current client user name for the connection. This information is

for client accounting purposes. Unlike the JDBC connection user name, this

value can change during a connection. For a DB2 UDB for OS/390 or z/OS

server, the maximum length is 16 bytes.

clientWorkstation

Specifies the workstation name for the current client for the connection. This

information is for client accounting purposes. This value can change during a

connection. The data type of this property is String. For a DB2 UDB for

OS/390 or z/OS server, the maximum length is 18 bytes. A Java empty string

("") is valid for this value, but a Java null value is not valid.

cliSchema

Specifies the schema of the DB2 shadow catalog tables or views that are

searched when an application invokes a DatabaseMetaData method.

currentFunctionPath

Specifies the SQL path that is used to resolve unqualified data type names and

function names in SQL statements that are in JDBC programs. The data type of

this property is String. For a DB2 UDB for OS/390 or z/OS server, the

186 Application Programming Guide and Reference for Java™

maximum length is 2048 bytes. The value is a comma-separated list of schema

names. Those names can be ordinary or delimited identifiers.

currentMaintainedTableTypesForOptimization

Specifies a value that identifies the types of objects that can be considered

when DB2 optimizes the processing of dynamic SQL queries. This register

contains a keyword representing table types. The data type of this property is

String.

 Possible values of currentMaintainedTableTypesForOptimization are:

ALL

Indicates that all materialized query tables will be considered.

NONE

Indicates that no materialized query tables will be considered.

SYSTEM

Indicates that only system-maintained materialized query tables that are

refresh deferred will be considered.

USER

Indicates that only user-maintained materialized query tables that are

refresh deferred will be considered.

currentPackagePath

Specifies a comma-separated list of collections on the server. The DB2 server

searches these collections for the DB2 packages for the DB2 Universal JDBC

Driver.

 The precedence rules for the currentPackagePath and currentPackageSet

properties follow the precedence rules for the DB2 CURRENT PACKAGESET

and CURRENT PACKAGE PATH special registers.

currentPackageSet

Specifies the collection ID to search for DB2 packages for the DB2 Universal

JDBC Driver. The data type of this property is String. The default is NULLID

for Universal Driver type 4 connectivity. For Universal Driver type 2

connectivity, if a value for currentPackageSet is not specified, the property

value is not set. If currentPackageSet is set, its value overrides the value of

jdbcCollection.

 Multiple instances of the DB2 Universal JDBC Driver can be installed at a

database server by running the DB2binder utility multiple times. The

DB2binder utility includes a -collection option that lets the installer specify the

collection ID for each DB2 Universal JDBC Driver instance. To choose an

instance of the DB2 Universal JDBC Driver for a connection, you specify a

currentPackageSet value that matches the collection ID for one of the DB2

Universal JDBC Driver instances.

 The precedence rules for the currentPackagePath and currentPackageSet

properties follow the precedence rules for the DB2 CURRENT PACKAGESET

and CURRENT PACKAGE PATH special registers.

currentRefreshAge

Specifies a timestamp duration value that is the maximum duration since a

REFRESH TABLE statement was processed on a system-maintained REFRESH

DEFERRED materialized query table such that the materialized query table can

be used to optimize the processing of a query. This property affects dynamic

statement cache matching. The data type of this property is long.

Chapter 4. JDBC and SQLJ reference 187

currentSchema

Specifies the default schema name that is used to qualify unqualified database

objects in dynamically prepared SQL statements. The value of this property

sets the value in the CURRENT SCHEMA special register on a DB2 server.

currentSchema is available only in DB2 Version 8 new-function mode.

currentSQLID

Specifies:

v The authorization ID that is used for authorization checking on dynamically

prepared CREATE, GRANT, and REVOKE SQL statements.

v The owner of a table space, database, storage group, or synonym that is

created by a dynamically issued CREATE statement.

v The implicit qualifier of all table, view, alias, and index names specified in

dynamic SQL statements.

currentSQLID sets the value in the CURRENT SQLID special register on a DB2

UDB for z/OS server. If the currentSQLID property is not set, the default

schema name is the value in the CURRENT SQLID special register.

cursorSensitivity

Specifies whether the java.sql.ResultSet.TYPE_SCROLL_SENSITIVE value for a

JDBC ResultSet maps to the SENSITIVE DYNAMIC attribute, the SENSITIVE

STATIC attribute, or the ASENSITIVE attribute for the underlying DB2 cursor.

The data type of this property is int. Possible values are

TYPE_SCROLL_SENSITIVE_STATIC (0), TYPE_SCROLL_SENSITIVE_DYNAMIC (1), or

TYPE_SCROLL_ASENSITIVE (2). The default is TYPE_SCROLL_SENSITIVE_STATIC.

 If the database server does not support sensitive dynamic scrollable cursors,

and TYPE_SCROLL_SENSITIVE_DYNAMIC is requested, the JDBC driver accumulates

a warning and maps the sensitivity to SENSITIVE STATIC. For DB2 UDB for

iSeries database servers, which do not support sensitive static cursors,

java.sql.ResultSet.TYPE_SCROLL_SENSITIVE always maps to SENSITIVE

DYNAMIC.

databaseName

Specifies the name for the database server. This name is used as the database

portion of the connection URL. The name depends on whether Universal

Driver type 4 connectivity or Universal Driver type 2 connectivity is used.

 For Universal Driver type 4 connectivity:

v If the connection is to a DB2 for z/OS server, the databaseName value is the

DB2 location name that is defined during installation. All characters in this

value must be uppercase characters. You can determine the location name by

executing the following SQL statement on the server:

SELECT CURRENT SERVER FROM SYSIBM.SYSDUMMY1;

v If the connection is to a DB2 UDB for Linux, UNIX and Windows server, the

databaseName value is the database name that is defined during installation.

v If the connection is to an IBM Cloudscape server, the databaseName value is

the fully-qualified name of the file that contains the database. This name

must be enclosed in double quotation marks ("). For example:

"c:/databases/testdb"

If this property is not set, connections are made to the local site.

 For Universal Driver type 2 connectivity:

v The databaseName value is the location name for the data source. The

location name is defined in the SYSIBM.LOCATIONS catalog table.

188 Application Programming Guide and Reference for Java™

#
#
#
#
#

#

#
#

#
#
#
#
#
#

If the databaseName property is not set, the connection location depends on

the type of environment in which the connection is made. If the connection

is made in an environment such as a stored procedure, CICS, or IMS

environment, where a DB2 connection to a location is previously established,

that connection is used. The connection URL for this case is

jdbc:default:connection:. If a connection to DB2 is not previously established,

the connection is to the local site. The connection URL for this case is

jdbc:db2os390: or jdbc:db2os390sqlj:.

deferPrepares

Specifies whether to defer prepare operations until run time. The data type of

this property is boolean. The default is true for Universal Driver type 4

connectivity. The property is not applicable to Universal Driver type 2

connectivity.

 Deferring prepare operations can reduce network delays. However, if you defer

prepare operations, you need to ensure that input data types match DB2 table

column types.

description

A description of the data source. The data type of this property is String.

driverType

For the DataSource interface, determines which driver to use for connections.

The data type of this property is int. Valid values are 2 or 4. 2 is the default.

enableConnectionConcentrator

Indicates whether the connection concentrator function of the DB2 Universal

JDBC Driver is enabled. The connection concentrator function is available only

for connections to DB2 UDB for z/OS servers.

 The data type of enableConnectionConcentrator is boolean. The default is

false. However, if enableSysplexWLB is set to true, the default is true.

enableSysplexWLB

Indicates whether the Sysplex workload balancing function of the DB2

Universal JDBC Driver is enabled. The Sysplex workload balancing function is

available only for connections to DB2 UDB for z/OS servers.

 The data type of enableSysplexWLB is boolean. The default is false. If

enableSysplexWLB is set to true, enableConnectionConcentrator is set to true

by default.

fullyMaterializeLobData

Indicates whether the driver retrieves LOB locators for FETCH operations. The

data type of this property is boolean. If the value is true, LOB data is fully

materialized within the JDBC driver when a row is fetched. If this value is

false, LOB data is streamed. The driver uses locators internally to retrieve

LOB data in chunks on an as-needed basis It is highly recommended that you

set this value to false when you retrieve LOBs that contain large amounts of

data. The default is true.

 This property has no effect on stored procedure parameters or LOBs that are

fetched using scrollable cursors. LOB stored procedure parameters are always

fully materialized. LOB locators are always used for data that is fetched using

scrollable cursors.

gssCredential

For a data source that uses Kerberos security, specifies a delegated credential

that is passed from another principal. The data type of this property is

org.ietf.jgss.GSSCredential. Delegated credentials are used in multi-tier

Chapter 4. JDBC and SQLJ reference 189

#
#
#
#

#
#

#
#
#
#

#
#
#

environments, such as when a client connects to WebSphere Application Server,

which, in turn, connects to DB2. You obtain a value for this property from the

client, by invoking the GSSContext.getDelegCred method. GSSContext is part of

the IBM Java Generic Security Service (GSS) API. If you set this property, you

also need to set the Mechanism and KerberosServerPrincipal properties.

 This property is applicable only to Universal Driver type 4 connectivity.

 For more information on using Kerberos security with the DB2 Universal JDBC

Driver, see “Kerberos security under the DB2 Universal JDBC Driver” on page

293.

jdbcCollection

Specifies the collection ID for the packages that are used by an instance of the

DB2 Universal JDBC Driver at run time. The data type of jdbcCollection is

String. The default is NULLID.

 This property is used with the DB2Binder -collection option. The DB2Binder

utility must have previously bound DB2 Universal JDBC Driver packages at

the server using a -collection value that matches the jdbcCollection value.

 The jdbcCollection setting does not determine the collection that is used for

SQLJ applications. For SQLJ, the collection is determined by the -collection

option of the SQLJ customizer.

 jdbcCollection does not apply to Universal Driver type 2 connectivity on DB2

UDB for z/OS.

keepDynamic

Specifies whether the DB2 server keeps already prepared dynamic SQL

statements in the dynamic statement cache after commit points so that those

prepared statements can be reused. The data type of this property is int. Valid

values that you can specify are YES (1) and NO (2). keepDynamic is applicable

only for connections to DB2 for z/OS database servers.

 If the keepDynamic property is not specified, the keepDynamic value is

NOT_SET (0). If the connection is to a DB2 UDB for z/OS server, caching of

dynamic statements for a connection is not done. If the connection is to a DB2

UDB for Linux, UNIX, and Windows server, caching of dynamic statements for

a connection is done.

 Dynamic statement caching can be done only if the EDM dynamic statement

cache is enabled on the database server. The CACHEDYN subsystem

parameter must be set to YES to enable the dynamic statement cache.

 keepDynamic is used with the DB2Binder -keepdynamic option. The

keepDynamic property value that is specified must match the -keepdynamic

value that was specified when DB2Binder was run.

 See DB2 Application Programming and SQL Guide for more information on

dynamic statement caching.

kerberosServerPrincipal

For a data source that uses Kerberos security, specifies the name that is used

for the data source when it is registered with the Kerberos Key Distribution

Center (KDC). The data type of this property is String.

 This property is applicable only to Universal Driver type 4 connectivity.

loginTimeout

The maximum time in seconds to wait for a connection to a data source, or for

SQL requests to that data source. After the number of seconds that are

specified by loginTimeout have elapsed, the driver closes the connection to the

190 Application Programming Guide and Reference for Java™

data source. The data type of this property is int. The default is 0. A value of 0

means that the timeout value is the default system timeout value. This

property is not supported for Universal Driver type 2 connectivity on DB2

UDB in the z/OS or OS/390 environment.

logWriter

The character output stream to which all logging and trace messages for the

DataSource object are printed. The data type of this property is

java.io.PrinterWriter. The default value is null, which means that no logging

or tracing for the DataSource is output.

maxTransportObjects

Specifies the maximum number of transport objects that can be used for all

connections with the associated DataSource object. Transport objects are used

for the connection concentrator and Sysplex workload balancing. The

maxTransportObjects value is ignored if the enableConnectionConcentrator or

enableSysplexWLB properties are not set to enable the use of the connection

concentrator or Sysplex workload balancing.

 The data type of this property is int.

 If the maxTransportObjects value has not been reached, and a transport object

is not available in the global transport objects pool, the pool creates a new

transport object. If the maxTransportObjects value has been reached, the

application waits for the amount of time that is specified by the

db2.jcc.maxTransportObjectWaitTime configuration property. After that amount

of time has elapsed, if there is still no available transport object in the pool, the

pool throws an SQLException.

 maxTransportObjects does not override the db2.jcc.maxTransportObjects

configuration property. maxTransportObjects has no effect on connections from

other DataSource objects. If the maxTransportObjects value is larger than the

db2.jcc.maxTransportObjects value, maxTransportObjects does not increase the

db2.jcc.maxTransportObjects value.

 The default value for maxTransportObjects is -1, which means that the number

of transport objects for the DataSource is limited only by the

db2.jcc.maxTransportObjects value for the driver.

password

The password to use for establishing connections. The data type of this

property is String. When you use the DataSource interface to establish a

connection, you can override this property value by invoking this form of the

DataSource.getConnection method:

getConnection(user, password);

pkList

Specifies a package list that is used for the underlying RRSAF CREATE

THREAD call when a JDBC or SQLJ connection to a data source is established.

 pkList is applicable only to Universal Driver type 2 connectivity.

 Specify this property if you do not bind plans for your SQLJ programs or for

the JDBC driver. If you specify this property, do not specify planName.

 Recommendation: Use pkList instead of planName.

 The format of the package list is:

Chapter 4. JDBC and SQLJ reference 191

#
#
#
#
#
#
#

#

#
#
#
#
#
#
#

#
#
#
#
#

#
#
#

��

�

 ,

collection-ID.*

��

pkList overrides the value of the db2.jcc.pkList configuration property. If

pkList, planName, and db2.jcc.pkList are not specified, the value of pkList is

NULLID.*.

planName

Specifies a DB2 plan name that is used for the underlying RRSAF CREATE

THREAD call when a JDBC or SQLJ connection to a data source is established.

 Specify this property if you bind plans for your SQLJ programs and for the

JDBC driver packages. If you specify this property, do not specify pkList.

 planName is applicable only to Universal Driver type 2 connectivity.

 planName overrides the value of the db2.jcc.planName configuration property.

If pkList, planName, and db2.jcc.planName are not specified, NULLID.* is

used as the package list for the underlying CREATE THREAD call.

portNumber

The port number where the DRDA® server is listening for requests. The data

type of this property is int.

 This property is applicable only to Universal Driver type 4 connectivity.

queryCloseImplicit

Specifies whether cursors are closed immediately after all rows are fetched.

queryCloseImplicit applies only to Universal Driver type 4 connectivity to DB2

UDB for z/OS database servers. Possible values are

DB2BaseDataSource.QUERY_CLOSE_IMPLICIT_YES (1) and

DB2BaseDataSource.QUERY_CLOSE_IMPLICIT_NO (2). The default is

DB2BaseDataSource.QUERY_CLOSE_IMPLICIT_YES.

 A value of DB2BaseDataSource.QUERY_CLOSE_IMPLICIT_YES can provide better

performance because this setting results in less network traffic.

readOnly

Specifies whether the connection is read-only. The data type of this property is

boolean. The default is false.

resultSetHoldability

Specifies whether cursors remain open after a commit operation. The data type

of this property is int. Valid values are HOLD_CURSORS_OVER_COMMIT (1) or

CLOSE_CURSORS_AT_COMMIT (2). These values are the same as the

ResultSet.HOLD_CURSORS_OVER_COMMIT and ResultSet.CLOSE_CURSORS_AT_COMMIT

constants that are defined in JDBC 3.0.

retrieveMessagesFromServerOnGetMessage

Specifies whether JDBC SQLException.getMessage calls cause the DB2

Universal JDBC Driver to invoke a DB2 UDB for OS/390 or z/OS stored

procedure that retrieves the message text for the error. The data type of this

property is boolean. The default is false, which means that the full message

text is not returned to the client.

 For example, if retrieveMessagesFromServerOnGetMessage is set to true, the

following message is returned by SQLException.getMessage after an attempt to

perform an SQL operation on nonexistent table ADMF001.NO_TABLE:

ADMF001.NO_TABLE is an undefined name.

192 Application Programming Guide and Reference for Java™

#
#
#
#
#
#
#

#
#

#
#
#
#
#
#

#
#
#

#

If retrieveMessagesFromServerOnGetMessage is set to false, the following

message is returned:

DB2 SQL error: SQLCODE: -204, SQLSTATE: 42704, SQLERRMC: ADMF001.NO_TABLE

An alternative to setting this property to true is to use the DB2-only

DB2Sqlca.getMessage method in applications. Both techniques result in a stored

procedure call, which starts a unit of work.

returnAlias

Specifies whether the JDBC driver returns rows for table aliases and synonyms

for DatabaseMetaData methods that return table information, such as

getTables. The data type of returnAlias is int. Possible values are:

0 Do not return rows for aliases or synonyms of tables in output from

DatabaseMetaData methods that return table information.

1 For tables that have aliases or synonyms, return rows for aliases and

synonyms of those tables, as well as rows for the tables, in output from

DatabaseMetaData methods that return table information. This is the

default.

securityMechanism

Specifies the DRDA security mechanism. The data type of this property is int.

Possible values are:

CLEAR_TEXT_PASSWORD_SECURITY (3)

User ID and password

USER_ONLY_SECURITY (4)

User ID only

ENCRYPTED_PASSWORD_SECURITY (7)

User ID, encrypted password

ENCRYPTED_USER_AND_PASSWORD_SECURITY (9)

Encrypted user ID and password

KERBEROS_SECURITY (11)

Kerberos

ENCRYPTED_USER_AND_DATA_SECURITY (12)

Encrypted user ID and encrypted security-sensitive data.

ENCRYPTED_USER_PASSWORD_AND_DATA_SECURITY (13)

Encrypted user ID and password, and encrypted

security-sensitive data.

If this property is specified, the specified security mechanism is the only

mechanism that is used. If the security mechanism is not supported by the

connection, an exception is thrown.

The default value for securityMechanism is

CLEAR_TEXT_PASSWORD_SECURITY. If the server does not support

CLEAR_TEXT_PASSWORD_SECURITY but supports

ENCRYPTED_USER_AND_PASSWORD_SECURITY, the DB2 Universal JDBC

Driver driver updates the security mechanism to

ENCRYPTED_USER_AND_PASSWORD_SECURITY and attempts to connect to

the server. Any other mismatch in security mechanism support between the

requester and the server results in an error.

 This property is applicable only to Universal Driver type 4 connectivity.

Chapter 4. JDBC and SQLJ reference 193

#
#

#

#
#
#

#
#
#
#

##
#

##
#
#
#

#
#
#
#
#
#
#
#

sendDataAsIs

Specifies that the DB2 Universal JDBC Driver does not convert input parameter

values to the target column data types. The data type of this property is

boolean. The default is false.

 You should use this property only for applications that always ensure that the

data types in the application match the data types in the corresponding DB2

tables.

serverName

The host name or the TCP/IP address of the data source. The data type of this

property is String.

 This property is applicable only to Universal Driver type 4 connectivity.

supportsAsynchronousXARollback

Specifies whether the DB2 Universal JDBC Driver supports asynchronous XA

rollback operations. The data type of this property is int. The default is

DB2BaseDataSource.NO (2). If the application runs against a BEA WebLogic

Server application server, set supportsAsynchronousXARollback to

DB2BaseDataSource.YES (1).

traceDirectory

Specifies a directory into which trace information is written. The data type of

this property is String. When traceDirectory is specified, trace information for

multiple connections on the same DataSource is written to multiple files.

 When traceDirectory is specified, a connection is traced to a file named

traceFile_origin_n.

 If traceFileName is not specified, file-name is traceFile. If traceFileName is also

specified, file-name is the value traceFileName.

 n is the nth connection for a DataSource.

 origin indicates the origin of the log writer that is in use. Possible values of

origin are:

cpds The log writer for a DB2ConnectionPoolDataSource object.

driver The log writer for a DB2Driver object.

global The log writer for a DB2TraceManager object.

sds The log writer for a DB2SimpleDataSource object.

xads The log writer for a DB2XADataSource object.

traceFile

Specifies the name of a file into which the DB2 Universal JDBC Driver writes

trace information. The data type of this property is String. The traceFile

property is an alternative to the logWriter property for directing the output

trace stream to a file.

 For Universal Driver type 2 connectivity, the db2.jcc.override.traceFile

configuration property value overrides the traceFile property value.

 Recommendation: Set the db2.jcc.override.traceFile configuration property,

rather than setting the traceFile property for individual connections.

traceFileAppend

Specifies whether to append to or overwrite the file that is specified by the

traceFile property. The data type of this property is boolean. The default is

false, which means that the file that is specified by the traceFile property is

overwritten.

194 Application Programming Guide and Reference for Java™

#
#
#
#
#
#

traceLevel

Specifies what to trace. The data type of this property is int.

 You can specify one or more of the following traces with the traceLevel

property:

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_NONE (X'00')

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_CONNECTION_CALLS (X'01')

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_STATEMENT_CALLS (X'02')

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_RESULT_SET_CALLS (X'04')

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DRIVER_CONFIGURATION (X'10')

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_CONNECTS (X'20')

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DRDA_FLOWS (X'40')

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_RESULT_SET_META_DATA (X'80')

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_PARAMETER_META_DATA (X'100')

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DIAGNOSTICS (X'200')

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_SQLJ (X'400')

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL (X'FFFFFFFF')

To specify more than one trace, use one of these techniques:

v Use bitwise OR (|) operators with two or more trace values. For example, to

trace DRDA flows and connection calls, specify this value for traceLevel:

TRACE_DRDA_FLOWS|TRACE_CONNECTION_CALLS

v Use a bitwise complement (~) operator with a trace value to specify all

except a certain trace. For example, to trace everything except DRDA flows,

specify this value for traceLevel:

 ~TRACE_DRDA_FLOWS

useTargetColumnEncoding

Specifies whether to send single-byte character data for JDBC statement input

parameters to the server in the encoding scheme of the target table column.

The data type of this property is boolean. The default is true.

 If useTargetColumnEncoding is false, or there is no encoding scheme

information available for the target column, the data is sent to the host in the

UTF-8 or UCS-2 encoding scheme.

 The value of useTargetColumnEncoding has no effect on mixed or double-byte

character data. That data is sent to the server as Unicode.

 The value of useTargetColumnEncoding has no effect on output data.

 If useTargetColumnEncoding is true, and there is no Java runtime

character-to-byte converter to convert the data to the CCSID of the DB2 table

column, an exception is thrown.

user

The user ID to use for establishing connections. The data type of this property

is String. When you use the DataSource interface to establish a connection, you

can override this property value by invoking this form of the

DataSource.getConnection method:

getConnection(user, password);

Chapter 4. JDBC and SQLJ reference 195

DataSource properties for the JDBC/SQLJ 2.0 Driver for OS/390 and

z/OS

A DB2DataSource or DB2SimpleDataSource class provides a set of properties that

define how the connection to a particular data source should be made. Those

properties are usually set when a DataSource object is created and deployed. Those

properties are:

databaseName

Specifies the location name to be used when establishing connections using the

DataSource object. If the location name is not the local site (see the description

of the DB2SQLJSSID property in “The SQLJ/JDBC run-time properties file” on

page 281), the location name must be defined in SYSIBM.LOCATIONS. If the

location name is the local site, the location name must have been specified in

field DB2 LOCATION NAME of the DISTRIBUTED DATA FACILITY panel

during the DB2 installation. If you do not set the databaseName property,

connections that are established using this data source object are to the local

site. This property has data type String. The default value is null.

description

Describes the data source object. This property has data type String. The

default value is null.

user

Specifies the z/OS user ID to be used when using the DataSource object to

establish a connection to the data source. DB2 validates the user ID and

password. You can override this property by calling the

DataSource.getConnection method with the user parameter. If you set the user

property, or specify user parameter in the DataSource.getConnection method

call, you must also set the password property, or specify the password parameter

in the DataSource.getConnection method call. This property has data type

String.

password

Specifies a corresponding password for the user property. You can override

this property by calling the DataSource.getConnection method with the

password parameter. This property has data type String. The default value is

null.

planName

Specifies the name of the plan that DB2 allocates for connections that are

established using the data source object. This property has data type String.

The default value is DSNJDBC.

loginTimeout

Specifies the maximum time in seconds to wait for the DataSource object to

connect to a data source. A value of 0 means that the timeout value is the

default system timeout value, which is specified by the

db2.connpool.connect.create.timeout property in the db2sqljjdbc.properties

file. This property has data type int. The default value is 0.

 Table 47 on page 197 lists the methods that you use to set and retrieve the property

values.

196 Application Programming Guide and Reference for Java™

Table 47. getXXX and setXXX methods for DataSource properties under the JDBC/SQLJ 2.0 Driver for OS/390 and

z/OS

Property getXXX method setXXX method

databaseName String getDatabaseName() void setDatabaseName(String

location-name)

description String getDescription() void setDescription(String

description)

loginTimeout int getLoginTimeout() void setLoginTimeout(int timeout)

password None void setPassword(String password)

planName String getPlanName() void setPlanName(String plan-name)

user String getUser() void setUser(String user-name)

Chapter 4. JDBC and SQLJ reference 197

198 Application Programming Guide and Reference for Java™

Chapter 5. Creating Java stored procedures and user-defined

functions

Stored procedures and user-defined functions are programs that can contain SQL

statements. You invoke a stored procedure from a client program by executing the

SQL CALL statement. You invoke a user-defined function by specifying the

user-defined function name, followed by its arguments, in an SQL statement. This

topic contains information that is specific to defining and writing Java user-defined

functions and stored procedures. For general information on stored procedures, see

Part 6 of DB2 Application Programming and SQL Guide. For general information on

user-defined functions, see Part 3 of DB2 Application Programming and SQL Guide.

For information on preparing Java stored procedures or user-defined functions for

execution, see “Preparing Java routines for execution” on page 245.

In this topic, the following terminology is used:

v The word routine refers to either a stored procedure or a user-defined function.

v The term interpreted Java stored routine refers to a stored procedure or a

user-defined function that runs in a JVM.

The following topics provide additional information:

v “Setting up the environment for interpreted Java routines”

v “Defining a Java routine to DB2” on page 206

v “Defining a JAR file for a Java routine to DB2” on page 210

v “Writing a Java routine” on page 214

v “Testing a Java routine” on page 218

Setting up the environment for interpreted Java routines

This topic discusses the setup tasks for preparing and running interpreted Java

routines. If you plan to use DB2 Development Center to prepare and run your

interpreted Java routines, see the following URL for complete instructions:

http://www.ibm.com/software/db2zos/sqlproc

To set up the environment for running interpreted Java routines, you need to

perform these tasks:

1. Ensure that your operating system and the Java SDK are at the correct levels,

and that you have installed all prerequisite products. See “Prerequisites for

interpreted Java routines” for a list of requirements.

2. Install DB2 UDB for z/OS Java support. See Chapter 7, “Installing the DB2

Universal JDBC Driver,” on page 251.

3. Create the Workload Manager for z/OS (WLM) application environment for

running the routines. See “Setting up the WLM application environment for

interpreted Java routines” on page 200.

4. Set environment variables that are required by Java routines. See “Setting the

run-time environment for interpreted Java stored procedures” on page 202.

Prerequisites for interpreted Java routines

In addition to DB2 UDB for z/OS with Java support, you need to install the

following products for interpreted Java stored procedures:

v z/OS with z/OS UNIX System Services, WLM, and RRS

© Copyright IBM Corp. 1998, 2006 199

v IBM Developer Kit for z/OS, Java 2 Technology Edition, SDK 1.3.1 level, SDK

1.4.1 level or later

Setting up the WLM application environment for interpreted

Java routines

To set up WLM application environments for stored procedures or user-defined

functions, you need to define a JCL startup procedure for each WLM environment,

and define the application environment to WLM. You need different WLM

application environments for interpreted Java routines from the WLM application

environments you use for other routines.

Creating the WLM address space startup procedure

The address space startup procedure for Java routines requires extra DD statements

that other routines do not need. Figure 63 shows an example of a startup

procedure for an address space in which Java routines can run. The JAVAENV DD

statement indicates to DB2 that the WLM environment is for Java routines.

 Notes to Figure 63:

 �1� In this line, change the DB2SSN value to your DB2 UDB for z/OS subsystem

name. Change the APPLENV value to the name of the application environment

that you set up for Java stored procedures. The maximum value of NUMTCB

should be between 5 and 8. For testing a Java stored procedure, NUMTCB=1 is

recommended. With NUMTCB=1, only one JVM is started, so refreshing the WLM

environment after you change the stored procedure takes less time.

�2� JAVAENV specifies a data set that contains Language Environment® run-time

options for Java stored procedures. The presence of this DD statement indicates to

DB2 that the WLM environment is for Java routines. For an interpreted Java

routine, this data set must contain the environment variable JAVA_HOME. This

environment variable indicates to DB2 that the WLM environment is for

interpreted Java routines. JAVA_HOME also specifies the highest-level directory in

the set of directories that containing the Java SDK.

�3� Specifies a data set into which DB2 puts information that you can use to debug

your stored procedure. The information that DB2 collects can be very helpful in

debugging setup problems, and also contains key information that you need to

provide when you submit a problem to IBM Service. You should comment out this

DD statement during production.

Defining the WLM application environment

To define the application environment to WLM, specify the values shown on the

following WLM panels.

//DSNWLM PROC RGN=0K,APPLENV=WLMIJAV,DB2SSN=DSN,NUMTCB=5 �1�

//IEFPROC EXEC PGM=DSNX9WLM,REGION=&RGN,TIME=NOLIMIT,

// PARM=’&DB2SSN,&NUMTCB,&APPLENV’

//STEPLIB DD DISP=SHR,DSN=DSN810.RUNLIB.LOAD

// DD DISP=SHR,DSN=CEE.SCEERUN

// DD DISP=SHR,DSN=DSN810.SDSNEXIT

// DD DISP=SHR,DSN=DSN810.SDSNLOAD

// DD DISP=SHR,DSN=DSN810.SDSNLOD2

//JAVAENV DD DISP=SHR,DSN=WLMIJAV.JSPENV �2�

//JSPDEBUG DD SYSOUT=A �3�

//CEEDUMP DD SYSOUT=A

//SYSPRINT DD SYSOUT=A

Figure 63. Startup procedure for a WLM address space in which an interpreted Java routine

runs

200 Application Programming Guide and Reference for Java™

|
|

||
|
|
|
|

File Utilities Notes Options Help

--

 Definition Menu WLM Appl

Command ===> ___

Definition data set . : none

Definition name WLMENV

Description Environment for Development Center

Select one of the

following options. . . 9 1. Policies

 2. Workloads

 3. Resource Groups

 4. Service Classes

 5. Classification Groups

 6. Classification Rules

 7. Report Classes

 8. Service Coefficients/Options

 9. Application Environments

 10. Scheduling Environments

Definition name

Specify the name of the WLM application environment that you are setting up

for stored procedures.

Description

Specify any value.

Options

Specify 9 (Application Environments).

 Application-Environment Notes Options Help

--

 Create an Application Environment

Command ===> ___

Application Environment Name . : WLMENV

Description Environment for Development Center

Subsystem Type DB2

Procedure Name DSN8WLMP

Start Parameters DB2SSN=DB2T,NUMTCB=3,APPLENV=WLMENV

Limit on starting server address spaces for a subsystem instance:

1 1. No limit.

 2. Single address space per system.

 3. Single address spaces per sysplex.

Subsystem Type

Specify DB2.

Procedure Name

This name must match the name of the JCL startup procedure for the stored

procedure address spaces that are associated with this application

environment.

Start Parameters

If the DB2 subsystem in which the stored procedure runs is not in a Sysplex,

the DB2SSN value must match the name of that DB2 subsystem. If the same

JCL is used for multiple DB2 subsystems, specify DB2SSN=&IWMSSNM.

 The NUMTCB value depends on the type of stored procedure you are running.

For running Java routines, the maximum value that you specify should be

between 5 and 8.

Chapter 5. Creating Java stored procedures and user-defined functions 201

The APPLENV value must match the value that you specify on the CREATE

PROCEDURE or CREATE FUNCTION statement for the routines that run in

this application environment.

Limit on starting server address spaces for a subsystem instance

Specify 1 (no limit).

Setting the run-time environment for interpreted Java stored

procedures

For Java routines, the startup procedure for the stored procedure address space

contains a JAVAENV DD statement. This statement specifies a data set that

contains Language Environment run-time options for the routines that run in the

stored procedure address space. Create the data set with the characteristics that are

listed in Table 48.

 Table 48. Data set characteristics for the JAVAENV data set

Primary space allocation 1 block

Secondary space allocation 1 block

Record format VB

Record length 255

Block size 4096

After you create the data set, edit it to insert a Language Environment options

string, which has this form:

��

XPLINK(ON),

�

 ,

ENVAR(

"

environment-variable

=

setting

"

),

�

� MSGFILE(, , , ,)

ddname

recfm

lrecl

blksize

NOENQ

ENQ

 ��

The maximum length of the Language Environment run-time options string in a

JAVAENV data set for interpreted Java stored procedures is 245 bytes. If you

exceed the maximum length, DB2 truncates the contents but does not issue a

message. If you enter the contents of the JAVAENV data set on more than one line,

DB2 concatenates the lines to form the run-time options string. The run-time

options string can contain no leading or trailing blanks. Within the string, only

blanks that are valid within an option are permitted.

If your environment variable list is long enough that the JAVAENV content is

greater than 245 bytes, you can put the environment variable list in a separate data

set in a separate file, and use the environment variable _CEE_ENVFILE to point to

that file.

Parameter descriptions:

202 Application Programming Guide and Reference for Java™

|

|

|
|
|
|
|

||

||

||

||

||

||
|
|
|
|

||||||||||||||||||||||||||||||
|

|
|||

|
|

|
|
|
|
|
|
|

|
|
|
|

|

XPLINK(ON)

Causes the initialization of the XPLINK environment. This parameter is

required for Java 2 Technology Edition, SDK 1.4.1. This parameter must not be

specified for Java 2 Technology Edition, SDK 1.3.1.

ENVAR

Sets the initial values for specified environment variables. The environment

variables that you might need to specify are:

CLASSPATH

When you prepare your Java routines, if you do not put your routine

classes into JAR files, include the directories that contain those classes. For

example:

CLASSPATH=.:/U/DB2RES3/ACMEJOS

DB2_HOME or JCC_HOME

The value of DB2_HOME or JCC_HOME is the highest-level directory in

the set of directories that contain the JDBC driver. Specify only one of these

environment variables. Use DB2_HOME if your Java routines run under

the JDBC/SQLJ Driver for OS/390 and z/OS. Use JCC_HOME if your Java

routines run under the DB2 Universal JDBC Driver. For example:

JCC_HOME=/usr/lpp/db2810

JAVA_HOME

This environment variable indicates to DB2 that the WLM environment is

for interpreted Java routines. The value of JAVA_HOME is the highest-level

directory in the set of directories that contain the Java SDK. For example:

JAVA_HOME=/usr/lpp/java/IBM/J1.3

JVMPROPS

This environment variable specifies the name of a z/OS UNIX System

Services file that contains startup options for the JVM in which the stored

procedure runs. For example:

JVMPROPS=/usr/lpp/java/properties/jvmsp

The following example shows the contents of a startup options file that

you might use for a JVM in which Java stored procedures run:

 # Properties file for JVM for Java stored procedures

 # Sets the initial size of middleware heap within non-system heap

 -Xms64M

 # Sets the maximum size of nonsystem heap

 -Xmx128M

 #initial size of application class system heap

 -Xinitacsh512K

 #initial size of system heap

 -Xinitsh512K

 #initial size of transient heap

 -Xinitth32M

For information about JVM startup options, see Persistent Reusable Java

Virtual Machine User's Guide, available at:

http://www.ibm.com/servers/eserver/zseries/software/java

Click the Reference Information link.

Chapter 5. Creating Java stored procedures and user-defined functions 203

|
|
|
|

|
|
|

|
|
|
|

|

|
|
|
|
|
|

|

|
|
|
|

|

|
|
|
|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|

LC_ALL

Modify LC_ALL to change the locale to use for the locale categories when

the individual locale environment variables specify locale information. This

value needs to match the CCSID for the DB2 subsystem on which the

stored procedures run. For example:

LC_ALL=En_US.IBM-037

RESET_FREQ

Specifies the frequency of JVM reset operations and indicates whether the

JVM is run in resettable mode.

 The reset frequency and resettable mode depend on the RESET_FREQ

value:

>0 The JVM is run in resettable mode. A reset operation is performed after

the number of stored procedure invocations that is specified by the

RESET_FREQ value.

 For example, RESET_FREQ=3 indicates that the JVM is reset after three

stored procedure invocations.

=0 The JVM is run in resettable mode, with a reset frequency of 256 stored

procedure invocations. This is the default.

<0 The JVM is not run in resettable mode.

 Non-resettable mode is supported only with the DB2 Universal JDBC

Driver. If RESET_FREQ is less than zero and JCC_HOME is not

specified in the JAVAENV data set, the JVM does not start, and an

error is generated.

 When the JVM runs in resettable mode, a garbage collection request is

made after every ten resets. In non-resettable mode, no garbage collection

request is made. If garbage collection is necessary when the JVM is in

non-resettable mode, request garbage collection by specifying the

-Xgcpolicy JVM option in the JVMPROPS environment variable.

 Running the JVM In resettable mode protects future users of a Java routine

from corruption that is caused by the current user of the routine. Run the

JVM in non-resettable mode only if you know that a routine does not

corrupt the JVM.

 For information about the resettable JVM and garbage collection, see

“Using static and non-final variables in a Java routine” on page 215 and

Persistent Reusable Java Virtual Machine User's Guide.

TMSUFFIX

Specifies a list of directories and JAR files that contain classes that are to be

included in the trusted middleware classes for the JVM that is used to

execute the routine. The list is in the same format as a CLASSPATH list.

Specify TMSUFFIX under either of the following circumstances:

v When a class needs control over its static members, and those members

cannot be re-initialized when the JVM is reset. In this case, you can

define a tidy-up method that is executed each time the JVM is reset.

v When the following conditions are true:

– Java routines that use certain classes fail with an SQLSTATE of 38503

and an error code -430.

– The associated DSNX961I console message indicates that the JVM

cannot be reset.

204 Application Programming Guide and Reference for Java™

|
|
|
|
|

|

#
#
#

#
#

##
#
#

#
#

##
#

##

#
#
#
#

#
#
#
#
#

#
#
#
#

#
#
#

|
|
|
|
|

|
|
|

|

|
|

|
|

– The action that prevents the JVM from being reset cannot be avoided.

The only way to be able to reset the JVM is to designate the classes

that contain the needed methods as trusted middleware.

If the value that is specified for RESET_FREQ is less than zero, any value

that is specified for TMSUFFIX is appended to the effective CLASSPATH.

The TMSUFFIX value follows the specified CLASSPATH and the JARs for

the JDBC driver. Any class that is specified for TMSUFFIX is treated as a

normal class. Its tidy-up method is not automatically invoked because the

JVM is not reset.

 For information about trusted middleware, static data, tidy-up methods,

and when a JVM cannot be reset, see Persistent Reusable Java Virtual Machine

User's Guide.

TZ

Modify TZ to change the local timezone. For example:

TZ=PST08

The default is GMT.

_CEE_ENVFILE

Specifies a z/OS UNIX System Services data set that contains some or all

of the settings for environment variables.

 Use the _CEE_ENVFILE parameter if the length of environment variable

string causes the total length of the JAVAENV content to exceed 245 bytes,

which is the DB2 limit for the JAVAENV content.

 The data set must be variable-length.The format for environment variable

settings in this data set is:

environment-variable-1=setting-1

environment-variable-2=setting-2

...

environment-variable-n=setting-n

You can specify some of your environment variable settings as arguments

of ENVAR and put some of the settings in this data set, or you can put all

of your environment variable settings in this data set.

 For example, to use file /u/db281/javasp/jspnolimit.txt for environment

variable settings, specify:

_CEE_ENVFILE=/u/db281/javasp/jspnolimit.txt

USE_LIBJVM_G

Specifies whether the debug version of the JVM is used instead of the

default, non-debug version of the JVM. The debug version of the JVM is in

dynamic link library libjvm_g. If USE_LIBJVM_G is not specified, or its

value is anything other than the capitalized string YES, the non-debug

version of the JVM is used. For example, USE_LIBJVM_G=NO causes the

non-debug version of the JVM to be used.

 If USE_LIBJVM_G=YES, the JVMPROPS environment variable must specify

a file that contains JVM startup options. That file must contain the startup

option -Djava.execsuffix=_g.

 Specify USE_LIBJVM_G=YES only under the direction of IBM Software

Support.

Chapter 5. Creating Java stored procedures and user-defined functions 205

|
|
|

#
#
#
#
#
#

|
|
|

|
|

|

|

|
|
|

|
|
|

|
|

|
|
|
|

|
|
|

|
|

|

#
#
#
#
#
#
#

#
#
#

#
#

MSGFILE

Specifies the DD name of a data set in which Language Environment puts

run-time diagnostics. All subparameters in the MSGFILE parameter are

optional. The default is

MSGFILE(SYSOUT,FBA,121,0,NOENQ)

If you specify a data set name in the JSPDEBUG statement of your stored

procedure address space startup procedure, you need to specify JSPDEBUG as

the first parameter. If the NUMTCB value in the stored procedure address

space startup procedure is greater than 1, you need to specify ENQ as the fifth

subparameter. z/OS Language Environment Programming Reference contains

complete information about MSGFILE.

The following example shows the contents of a JAVAENV data set.

ENVAR("JCC_HOME=/usr/lpp/db2810",

"JAVA_HOME=/usr/lpp/javas13/J1.3",

"WORK_DIR=/u/db281/tmp"),

MSGFILE(JSPDEBUG)

For information on environment variables that are related to locales, see z/OS

C/C++ Programming Guide.

Defining a Java routine to DB2

Defining a Java routine to DB2 involves one or two steps, depending on where the

routine resides:

v For interpreted Java routines that you store in JAR files, you need to define the

JAR files to DB2.

If you prepare the Java routine for execution without DB2 Development Center,

use the SQLJ.INSTALL_JAR built-in stored procedure to define the JAR files to

DB2. To replace or delete the JAR file, use the SQLJ.REPLACE_JAR or

SQLJ.REMOVE_JAR stored procedure. These stored procedures are discussed in

detail in “Defining a JAR file for a Java routine to DB2” on page 210.

v For all types of Java routines, you need to define the routine to DB2.

If you prepare the Java routine for execution without DB2 Development Center,

execute the CREATE PROCEDURE or CREATE FUNCTION statement to define

the routine to DB2. To alter the routine definition, use the ALTER PROCEDURE

or ALTER FUNCTION statement. For information on these statements, see

Chapter 5 of DB2 SQL Reference.

If you use the DB2 Development Center to prepare your Java stored procedures for

execution, the DB2 Development Center defines the Java routine and the JAR file

to DB2 for you.

The definition for a Java routine is much like the definition for a routine in any

other language. However, the following parameters have different meanings for

Java routines.

LANGUAGE

Specifies the application programming language in which the routine is

written.

 Specify LANGUAGE JAVA.

 You cannot specify LANGUAGE JAVA for a user-defined table function.

206 Application Programming Guide and Reference for Java™

|
|
|
|

|

|
|
|
|
|
|

|

|
|
|
|

|
|

|

|
|

|
|

|
|
|
|
|

|

|
|
|
|
|

|
|
|

|
|
|

|
|
|

|

|

EXTERNAL NAME

Specifies the program that runs when the procedure name is specified in a

CALL statement or the user-defined function name is specified in an SQL

statement. For Java routines, the argument of EXTERNAL NAME is a string

that is enclosed in single quotation marks. The EXTERNAL NAME clause for a

Java routine has the following syntax:

�� EXTERNAL NAME �

� ' class-name.method-name '

(1)

(2)

(method-signature)

JAR-name:

package-name

.

 ��

Notes:

1 For compatibility with DB2 UDB for Linux, UNIX and Windows, you can use an exclamation

point (!) after JAR-name instead of a colon.

2 For compatibility with previous versions of DB2, you can use a slash (/) after package-name

instead of a period.

Whether you include JAR-name depends on where the Java code for the routine

resides. If you create a JAR file from the class file for the routine (the output

from the javac command), you need to include JAR-name. You must create the

JAR file and define the JAR file to DB2 before you execute the CREATE

PROCEDURE or CREATE FUNCTION statement. If some other user executes

the CREATE PROCEDURE or CREATE FUNCTION statement, you need to

grant the USAGE privilege on the JAR to them.

 If you use a JAR file, that JAR file must be self-contained. That is, if a class

within the JAR file references another class, the referenced class must be also

be in the JAR file. The exception to this rule is that classes that are in

directories that are referenced in CLASSPATH, DB2_HOME or JCC_HOME,,

and JAVA_HOME do not need to be included in the JAR file.

 Whether you include (method-signature) depends on the following factors:

v The way that you define the parameters in your routine method

Each SQL data type has a corresponding default Java data type. If your

routine method uses data types other than the default types, you need to

include a method signature in the EXTERNAL NAME clause. A method

signature is a comma-separated list of data types.

v Whether you overload a Java routine

If you have several Java methods in the same class, with the same name and

different parameter types, you need to specify the method signature to

indicate which version of the program is associated with the Java routine.

If your stored procedure returns result sets, you also need to include a

parameter in the method signature for each result set. The parameter can be in

one of the following forms:

v java.sql.ResultSet[]

v An array of an SQLJ iterator class

You do not include these parameters in the parameter list of the SQL CALL

statement when you invoke the stored procedure.

Chapter 5. Creating Java stored procedures and user-defined functions 207

|
|
|
|
|
|
|

|||||
|

|
||||||||||||||||||||||||||||||

|

|

||
|

||
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|

|

|
|
|
|

|

|
|
|

|
|
|
|
|

|
|

Table 41 on page 131 shows the SQL data types that you can specify in the

parameter definition and the corresponding Java data types that you can

specify in the method signature.

 Example: EXTERNAL NAME clause for a Java user-defined function: Suppose that

you write a Java user-defined function as method getSals in class S1Sal and

package s1. You put S1Sal in a JAR file named sal_JAR and install that JAR in

DB2. The EXTERNAL NAME parameter is :

EXTERNAL NAME 'sal_JAR:s1.S1Sal.getSals'

Example: EXTERNAL NAME clause for a Java stored procedure: Suppose that you

write a Java stored procedure as method getSals in class S1Sal. You put S1Sal

in a JAR file named sal_JAR and install that JAR in DB2. The stored procedure

has one input parameter of type INTEGER and returns one result set. The Java

method for the stored procedure receives one parameter of type

java.lang.Integer, but the default Java data type for an SQL type of INTEGER is

int, so the EXTERNAL NAME clause requires a signature clause. The

EXTERNAL NAME parameter is :

EXTERNAL NAME 'sal_JAR:S1Sal.getSals(java.lang.Integer,java.sql.ResultSet[])'

NO SQL

Indicates that the routine does not contain any SQL statements.

 For a Java routine that is stored in a JAR file, you cannot specify NO SQL.

PARAMETER STYLE

Identifies the linkage convention that is used to pass parameters to the routine.

 For a Java routine, the only value that is valid is PARAMETER STYLE JAVA.

 You cannot specify PARAMETER STYLE JAVA for a user-defined table

function.

WLM ENVIRONMENT

Identifies the MVS workload manager (WLM) environment in which the

routine is to run when the DB2 stored procedure address space is

WLM-established.

 If you do not specify this parameter, the routine runs in the default WLM

environment that was specified when DB2 was installed.

PROGRAM TYPE

Specifies whether Language Environment runs the routine as a main routine or

a subroutine.

 This parameter value must be PROGRAM TYPE SUB.

RUN OPTIONS

Specifies the Language Environment run-time options to be used for the

routine.

 This parameter has no meaning for a Java routine. If you specify this

parameter with LANGUAGE JAVA, DB2 issues an error.

SCRATCHPAD

Specifies that when the user-defined function is invoked for the first time, DB2

allocates memory for a scratchpad.

 You cannot use a scratchpad in a Java user-defined function. Do not specify

SCRATCHPAD when you create or alter a Java user-defined function.

208 Application Programming Guide and Reference for Java™

|
|
|

|
|
|
|

|

|
|
|
|
|
|
|
|
|

|
|

|

|
|

|

|
|

|
|
|
|

|
|

|
|
|

|

|
|
|

|
|

|
|
|

|
|

FINAL CALL

Specifies that a final call is made to the user-defined function, which the

function can use to free any system resources that it has acquired.

 You cannot perform a final call when you call a Java user-defined function. Do

not specify FINAL CALL when you create or alter a Java user-defined function.

DBINFO

Specifies that when the routine is invoked, an additional argument is passed

that contains environment information.

 You cannot pass the additional argument when you call a Java routine. Do not

specify DBINFO when you call a Java routine.

SECURITY

Specifies how the routine interacts with an external security product, such as

RACF, to control access to non-SQL resources. The values of the SECURITY

parameter are the same for a Java routine as for any other routine. However,

the value of the SECURITY parameter determines the authorization ID that

must have authority to access z/OS UNIX System Services. The values of

SECURITY and the IDs that must have access to z/OS UNIX System Services

are:

DB2 The user ID that is defined for the stored procedure address space in

the RACF started-procedure table.

EXTERNAL

The invoker of the routine.

DEFINER

The definer of the routine.

 For a complete explanation of the parameters in a CREATE PROCEDURE,

CREATE FUNCTION, ALTER PROCEDURE or ALTER FUNCTION statement, see

Chapter 5 of DB2 SQL Reference.

Example: Defining a Java stored procedure: Suppose that you have written and

prepared a stored procedure that has these characteristics:

 Fully-qualified procedure name SYSPROC.S1SAL

Parameters DECIMAL(10,2) INOUT

Language Java

Collection ID for the stored procedure

package

DSNJDBC

Package, class, and method name s1.S1Sal.getSals

Type of SQL statements in the program Statements that modify DB2 tables

WLM environment name WLMIJAV

Maximum number of result sets returned 1

This CREATE PROCEDURE statement defines the stored procedure to DB2:

CREATE PROCEDURE SYSPROC.S1SAL

 (DECIMAL(10,2) INOUT)

 FENCED

 MODIFIES SQL DATA

 COLLID DSNJDBC

 LANGUAGE JAVA

 EXTERNAL NAME 's1.S1Sal.getSals'

Chapter 5. Creating Java stored procedures and user-defined functions 209

|
|
|

|
|

|
|
|

|
|

|
|
|
|
|
|
|
|

||
|

|
|

|
|

|
|
|

|
|

|||
||
||
|
|
|

||
||
||
||
|

|

|
|
|
|
|
|
|

WLM ENVIRONMENT WLMIJAV

 DYNAMIC RESULT SETS 1

 PROGRAM TYPE SUB

 PARAMETER STYLE JAVA;

Example: Defining a Java user-defined function: Suppose that you have written

and prepared a user-defined function that has these characteristics:

 Fully-qualified function name MYSCHEMA.S2SAL

Input parameter INTEGER

Data type of returned value VARCHAR(20)

Language Java

Collection ID for the function package DSNJDBC

Package, class, and method name s2.S2Sal.getSals

Java data type of the method input

parameter

java.lang.Integer

JAR file that contains the function class sal_JAR

Type of SQL statements in the program Statements that modify DB2 tables

Function is called when input parameter is

null?

Yes

WLM environment name WLMIJAV

This CREATE FUNCTION statement defines the user-defined function to DB2:

CREATE FUNCTION MYSCHEMA.S2SAL(INTEGER)

 RETURNS VARCHAR(20)

 FENCED

 MODIFIES SQL DATA

 COLLID DSNJDBC

 LANGUAGE JAVA

 EXTERNAL NAME 'sal_JAR:s2.S2Sal.getSals(java.lang.Integer)'

 WLM ENVIRONMENT WLMIJAV

 CALLED ON NULL INPUT

 PROGRAM TYPE SUB

 PARAMETER STYLE JAVA;

In this function definition, you need to specify a method signature in the

EXTERNAL NAME clause because the data type of the method input parameter is

different from the default Java data type for an SQL type of INTEGER.

Defining a JAR file for a Java routine to DB2

One way to organize the classes for a Java routine is to collect those classes into a

JAR file, as described in “Creating JAR files for Java routines” on page 247. If you

do this, you need to install the JAR file into the DB2 catalog. DB2 provides five

built-in stored procedures that perform the following functions for the JAR file:

SQLJ.INSTALL_JAR

Installs a JAR file into the local DB2 catalog.

SQLJ.REPLACE_JAR

Replaces an existing JAR file in the local DB2 catalog.

SQLJ.REMOVE_JAR

Deletes a JAR file from the local DB2 catalog or a remote DB2 catalog.

SQLJ.DB2_INSTALL_JAR

Installs a JAR file into the local DB2 catalog or a remote DB2 catalog.

SQLJ.DB2_REPLACE_JAR

Replaces an existing JAR file in the local DB2 catalog or a remote DB2 catalog.

210 Application Programming Guide and Reference for Java™

|
|
|
|

|
|

|||
||
||
||
||
||
|
|
|

||
||
|
|
|

||
|

|

|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

|
|
|
|

|
|

|
|

|
|

|
|

|
|

You can use the DB2 Development Center to install JAR files into the DB2 catalog,

or you can write a client program that executes SQL CALL statements to invoke

the stored procedures. The following information describes how to call the stored

procedures.

Calling SQLJ.INSTALL_JAR

Use SQLJ.INSTALL_JAR to create a new definition of a JAR file in the local DB2

catalog.

SQLJ.INSTALL_JAR authorization

To call SQLJ.INSTALL_JAR, you need the following privileges:

v The EXECUTE privilege on SQLJ.INSTALL_JAR.

v If the SQL authorization ID of the process under which SQLJ.INSTALL_JAR is

invoked is not the same as the schema for the JAR, you need one of the

following authorizations:

– SYSADM or SYSCTRL authority

– The CREATEIN privilege on the designated schema for the JAR.

SQLJ.INSTALL_JAR syntax

�� CALL SQLJ.INSTALL_JAR (url, JAR-name, deploy) ��

SQLJ.INSTALL_JAR parameters

url A VARCHAR(1024) input parameter that identifies the z/OS UNIX System

Services full path name for the JAR file that is to be installed in the DB2

catalog. The format is file://path-name or file:/path-name.

JAR-name

A VARCHAR(257) input parameter that contains the DB2 name of the JAR, in

the form schema.JAR-id or JAR-id. This is the name that you use when you refer

to the JAR in SQL statements. If you omit schema, DB2 uses the SQL

authorization ID that is in the CURRENT SQLID special register.

deploy

An INTEGER input parameter that indicates whether additional actions should

be performed after the JAR file is installed. Additional actions are not

supported, so this value should always be 0.

Calling SQLJ.REPLACE_JAR

Use SQLJ.REPLACE_JAR to replace an existing JAR file in the local DB2 catalog.

SQLJ.REPLACE_JAR authorization

To call SQLJ.REPLACE_JAR, you need the following privileges:

v The EXECUTE privilege on SQLJ.REPLACE_JAR.

v If the SQL authorization ID of the process under which SQLJ.REPLACE_JAR is

invoked is not the same as the schema for the JAR, you need one of the

following authorizations:

– SYSADM or SYSCTRL authority

– The DROPIN and CREATEIN privileges on the designated schema for the

JAR.

Chapter 5. Creating Java stored procedures and user-defined functions 211

|
|
|
|

|

|
|

|
|

|

|
|
|

|

|

|
|

|||||||||||||||||||
|
|

|

||
|
|

|
|
|
|
|

|
|
|
|

|

|

|
|

|

|
|
|

|

|
|

SQLJ.REPLACE_JAR syntax

�� CALL SQLJ.REPLACE_JAR (url, JAR-name) ��

SQLJ.REPLACE_JAR parameters

url A VARCHAR(1024) input parameter that identifies the z/OS UNIX System

Services full path name for the JAR file that replaces the existing JAR file in

the DB2 catalog. The format is file://path-name or file:/path-name.

JAR-name

A VARCHAR(257) input parameter that contains the DB2 name of the JAR, in

the form schema.JAR-id or JAR-id. This is the name that you use when you refer

to the JAR in SQL statements. If you omit schema, DB2 uses the SQL

authorization ID that is in the CURRENT SQLID special register.

Calling SQLJ.REMOVE_JAR

Use SQLJ.REMOVE_JAR to delete a JAR file from the local DB2 catalog or a

remote DB2 catalog. To delete a JAR file at a remote location, you need to execute

a CONNECT statement to connect to that location before you call

SQLJ.REMOVE_JAR.

SQLJ.REMOVE_JAR authorization

To call SQLJ.REMOVE_JAR, you need the following privileges:

v The EXECUTE privilege on SQLJ.REMOVE_JAR.

v If the SQL authorization ID of the process under which SQLJ.REMOVE_JAR is

invoked is not the same as the schema for the JAR, you need one of the

following authorizations:

– SYSADM or SYSCTRL authority

– The DROPIN privilege on the designated schema for the JAR.

SQLJ.REMOVE_JAR syntax

�� CALL SQLJ.REMOVE_JAR (JAR-name, undeploy) ��

SQLJ.REMOVE_JAR parameters

JAR-name

A VARCHAR(257) input parameter that contains the DB2 name of the JAR that

is to be removed from the catalog, in the form schema.JAR-id or JAR-id. This is

the name that you use when you refer to the JAR in SQL statements. If you

omit schema, DB2 uses the SQL authorization ID that is in the CURRENT

SQLID special register.

undeploy

An INTEGER input parameter that indicates whether additional actions should

be performed before the JAR file is removed. Additional actions are not

supported, so this value should always be 0.

212 Application Programming Guide and Reference for Java™

|
|

|||||||||||||||||
|
|

|

||
|
|

|
|
|
|
|

|

|
|
|
|

|
|

|

|
|
|

|

|

|
|

|||||||||||||||||
|
|

|

|
|
|
|
|
|

|
|
|
|

Calling SQLJ.DB2_INSTALL_JAR

Use SQLJ.DB2_INSTALL_JAR to create a new definition of a JAR file in the local

DB2 catalog or a remote DB2 catalog. To install a JAR file at a remote location, you

need to execute a CONNECT statement to connect to that location before you call

SQLJ.DB2_INSTALL_JAR.

SQLJ.DB2_INSTALL_JAR authorization

To call SQLJ.DB2_INSTALL_JAR, you need the following privileges:

v The EXECUTE privilege on SQLJ.DB2_INSTALL_JAR.

v If the SQL authorization ID of the process under which

SQLJ.DB2_INSTALL_JAR is invoked is not the same as the schema for the JAR,

you need one of the following authorizations:

– SYSADM or SYSCTRL authority

– The CREATEIN privilege on the designated schema for the JAR.

SQLJ.DB2_INSTALL_JAR syntax

�� CALL SQLJ.DB2_INSTALL_JAR (Jar-locator, JAR-name, deploy) ��

SQLJ.DB2_INSTALL_JAR parameters

JAR-locator

A BLOB locator input parameter that points to the JAR file that is to be

installed in the DB2 catalog.

JAR-name

A VARCHAR(257) input parameter that contains the DB2 name of the JAR, in

the form schema.JAR-id or JAR-id. This is the name that you use when you refer

to the JAR in SQL statements. If you omit schema, DB2 uses the SQL

authorization ID that is in the CURRENT SQLID special register.

deploy

An INTEGER input parameter that indicates whether additional actions should

be performed after the JAR file is installed. Additional actions are not

supported, so this value should always be 0.

Calling SQLJ.DB2_REPLACE_JAR

Use SQLJ.DB2_REPLACE_JAR to replace an existing JAR file in the local DB2

catalog or in a remote DB2 catalog. To replace a JAR file at a remote location, you

need to execute a CONNECT statement to connect to that location before you call

SQLJ.DB2_REPLACE_JAR.

SQLJ.DB2_REPLACE_JAR authorization

To call SQLJ.DB2_REPLACE_JAR, you need the following privileges:

v The EXECUTE privilege on SQLJ.REPLACE_JAR.

v If the SQL authorization ID of the process under which

SQLJ.DB2_REPLACE_JAR is invoked is not the same as the schema for the JAR,

you need one of the following authorizations:

– SYSADM or SYSCTRL authority

– The DROPIN and CREATEIN privileges on the designated schema for the

JAR.

Chapter 5. Creating Java stored procedures and user-defined functions 213

|

|
|
|
|

|
|

|

|
|
|

|

|

|
|

|||||||||||||||||||
|
|

|

|
|
|

|
|
|
|
|

|
|
|
|

|

|
|
|
|

|
|

|

|
|
|

|

|
|

SQLJ.DB2_REPLACE_JAR syntax

�� CALL SQLJ.DB2_REPLACE_JAR (JAR-locator, JAR-name) ��

SQLJ.DB2_REPLACE_JAR parameters

JAR-locator

A BLOB locator input parameter that points to the JAR file that is to be

replaced in the DB2 catalog.

JAR-name

A VARCHAR(257) input parameter that contains the DB2 name of the JAR, in

the form schema.JAR-id or JAR-id. This is the name that you use when you refer

to the JAR in SQL statements. If you omit schema, DB2 uses the SQL

authorization ID that is in the CURRENT SQLID special register.

Writing a Java routine

A Java routine is a Java application program that runs in a stored procedure

address space. It can include JDBC methods or SQLJ clauses. A Java routine is

much like any other Java program and follows the same rules as routines in other

languages. It receives input parameters, executes Java statements, optionally

executes SQLJ clauses, JDBC methods, or a combination of both, and returns

output parameters.

Differences between Java routines and stand-alone Java

programs

A Java routine differs from a stand-alone Java program in the following ways:

v In a Java routine, a JDBC connection or an SQLJ connection context can use the

connection to the data source that processes the CALL statement or the

user-defined function invocation. The URL that identifies this default connection

is jdbc:default:connection.

v The top-level method for a Java routine must be declared as static and public.

Although you can use static and final variables in a Java routine without

problems, you might encounter problems when you use static and non-final

variables. You cannot guarantee that a static and non-final variable retains its

value in the following circumstances:

– Across multiple invocations of the same routine

– Across invocations of different routines that reference that variable

See “Using static and non-final variables in a Java routine” on page 215 for more

information on how to use static and non-final variables.

v As in routines in other languages, the SQL statements that you can execute in

the routine depend on whether you specify an SQL access level of NO SQL,

CONTAINS SQL, READS SQL DATA, or MODIFIES SQL DATA. See Appendix

C of DB2 SQL Reference for a list of the SQL statements that you can execute for

each access level.

Differences between Java routines and other routines

A Java routine differs from stored procedures that are written in other languages in

the following ways:

214 Application Programming Guide and Reference for Java™

|
|

|||||||||||||||||
|
|

|

|
|
|

|
|
|
|
|

|
|
|
|

|

|

|
|

v A Java routine must be defined with PARAMETER STYLE JAVA. PARAMETER

STYLE JAVA specifies that the routine uses a parameter-passing convention that

conforms to the Java language and SQLJ specifications. DB2 passes INOUT and

OUT parameters as single-entry arrays. This means that in your Java routine,

you must declare OUT or INOUT parameters as arrays. For example, suppose

that stored procedure sp_one_out has one output parameter of type int. You

declare the parameter like this:

public static void routine_one_out (int[] out_parm)

v Java routines that are Java main methods have these restrictions:

– The method must have a signature of String[]. It must be possible to map all

the parameters to Java variables of type java.lang.String.

– The routine can have only IN parameters.
v You cannot make instrumentation facility interface (IFI) calls in Java routines.

v As in other Java programs, you cannot include the following statements in a

Java routine:

– CONNECT

– RELEASE

– SET CONNECTION
v The mappings between data types for routine parameters and host data types

follow the rules for mappings between SQL and SQLJ data types shown in

“Java, JDBC, and SQL data types” on page 127.

v The technique for returning result sets from Java stored procedures is different

from the technique for returning result sets in other stored procedures. See

“Writing a Java stored procedure to return result sets” on page 216 for

information on how to cause a Java stored procedure to return result sets.

Using static and non-final variables in a Java routine

Using static and non-final variables can cause problems for Java routines for the

following reasons:

v Use of variables that are static and non-final reduces portability.

Because the ANSI/ISO standard does not include support for static and

non-final variables, different database products might process those variables

differently.

v A sequence of routine invocations is not necessarily processed by the same JVM,

and static variable values are not shared among different JVMs.

For example, suppose that two stored procedures, INITIALIZE and PROCESS,

use the same static variable, sv1. INITIALIZE sets the value of sv1, and

PROCESS depends on the value of sv1. If INITIALIZE runs in one JVM, and

then PROCESS runs in another JVM, sv1 in PROCESS does not contain the value

that INTIALIZE set.

Specifying NUMTCB=1 in the WLM-established stored process space startup

procedure is not sufficient to guarantee that a sequence of routine invocations go

to the same JVM. Under load, multiple stored procedure address spaces are

initiated, and each address space has its own JVM. Multiple invocations might

be directed to multiple address spaces.

v By default, on z/OS systems, static variables are reset whenever the JVM goes

through a reset cycle.

The default number of stored procedure invocations or user-defined function

references before static variables are reset is 256. You can change this value for

the WLM address space. However, the routine has no control over this value.

Chapter 5. Creating Java stored procedures and user-defined functions 215

|

|
|

|

|
|
|

|
|

|
|
|
|
|

|
|
|
|
|

|
|

|
|
|

In certain cases, you need to declare variables as static and non-final. In those

cases, you can use one of the following techniques to make your routines work

correctly with static variables. For the JVM information that is discussed in these

descriptions, see Persistent Reusable Java Virtual Machine User's Guide.

 Static variable technique 1 (simpler):

 Set up the JVM to load classes as shareable application classes. This happens

automatically for classes that are in the CLASSPATH, and for classes that are

loaded from an installed JAR. In this case, static variables in Java routines are

stored in the application-class system heap, and might be impacted by JVM resets.

The application-class system heap is a segregated part of the system heap, and

contains shareable application-class objects that persist for the lifetime of the JVM.

To determine whether the values of static data in a routine have persisted across

routine invocations, define a static boolean variable in the class that contains the

routine. Initially set the variable to false, and then set it to true when you set the

value of static data. Check the value of the boolean variable at the beginning of the

routine. If the value is true, the static data has persisted. Otherwise, the data

values need to be set again. With this technique, static data values are not set for

most routine invocations, but are set more than once during the lifetime of the

JVM. Also, with this technique, it is not a problem for a routine to execute on

different JVMs for different invocations.

 Static variable technique 2 (more complex):

 Set up the JVM to load classes as trusted middleware classes. These classes go on

the middleware heap. The middleware heap contains objects that persist across

JVM resets. During A JVM reset, tidy-up and reinitialize methods can be used to

reset the classes to a known initialization state ready for their next use.

The advantage of this technique is that a class can be aware of the reset events and

is not subject to the default reinitialization of static variables when the JVM is

reset. The class must manage its own static data. In addition, trusted middleware

can perform some operations that shareable application classes cannot.

The disadvantages of this technique are:

v This technique does not address the case in which initialization occurs in one

JVM and use occurs in another.

v A trusted class cannot be stored in an installed JAR.

v Errors in trusted middleware classes can be hard to diagnose.

v Because trusted middleware classes can be more powerful than application

classes, errors in their coding can cause larger problems than errors in

application classes.

To make a class a trusted middleware class, specify the directory or JAR that

contains that class in the TMSUFFIX environment variable in the JAVAENV data

set, but not in the CLASSPATH. See “Setting the run-time environment for

interpreted Java stored procedures” on page 202.

Writing a Java stored procedure to return result sets

Your stored procedure can return multiple query result sets to a client program if

the following conditions are satisfied:

v The client supports the DRDA code points that are used to return query result

sets.

216 Application Programming Guide and Reference for Java™

|
|
|
|

|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

v The value of DYNAMIC RESULT SETS in the stored procedure definition is

greater than 0.

For each result set you want to be returned, your Java stored procedure must

perform the following actions:

v For each result set, include an object of type java.sql.ResultSet[] or an array of

an SQLJ iterator class in the parameter list for the stored procedure method. If

the stored procedure definition includes a method signature, for each result set,

include java.sql.ResultSet[] or the fully-qualified name of an array of a class that

is declared as an SQLJ iterator in the method signature. These result set

parameters must be the last parameters in the parameter list or method

signature. Do not include a java.sql.ResultSet array or an iterator array in the

SQL parameter list of the stored procedure definition.

v Execute a SELECT statement to obtain the contents of the result set.

v Retrieve any rows that you do not want to return to the client.

v Assign the contents of the result set to element 0 of the java.sql.ResultSet[]

object or array of an SQLJ iterator class that you declared in step 217.

v Do not close the ResultSet, the statement that generated the ResultSet, or the

connection that is associated with the statement that generated the ResultSet.

DB2 does not return result sets for ResultSets that are closed before the stored

procedure terminates.

Figure 64 shows an example of a Java stored procedure that uses an SQLJ iterator

to retrieve a result set.

 Notes to Figure 64:

 �1� This SQLJ clause declares the iterator named NameSal, which is used to retrieve

the rows that will be returned to the stored procedure caller in a result set.

package s1;

import sqlj.runtime.*;

import java.sql.*;

import java.math.*;

#sql iterator NameSal(String LastName, BigDecimal Salary); �1�

public class S1Sal

{

 public static void getSals(BigDecimal[] AvgSalParm,

 java.sql.ResultSet[] rs) �2�

 throws SQLException

 {

 NameSal iter1;

 try

 {

 #sql iter1 = {SELECT LASTNAME, SALARY FROM EMP �3�

 WHERE SALARY>0 ORDER BY SALARY DESC};

 #sql {SELECT AVG(SALARY) INTO :(AvgSalParm[0]) FROM EMP}; �4�

 }

 catch (SQLException e)

 {

 System.out.println("SQLCODE returned: " + e.getErrorCode());

 throw(e);

 }

 rs[0] = iter1.getResultSet(); �5�

 }

}

Figure 64. Java stored procedure that returns a result set

Chapter 5. Creating Java stored procedures and user-defined functions 217

�2� The declaration for the stored procedure method contains declarations for a single

passed parameter, followed by the declaration for the result set object.

�3� This SQLJ clause executes the SELECT to obtain the rows for the result set,

constructs an iterator object that contains those rows, and assigns the iterator

object to variable iter1.

�4� This SQLJ clause retrieves a value into the parameter that is returned to the stored

procedure caller.

�5� This statement uses the getResultSet method to assign the contents of the iterator

to the result set that is returned to the caller.

Testing a Java routine

Before you invoke your Java routines from SQL applications, it is a good idea to

run the routines as stand-alone programs, which are easier to debug. A Java

program that runs as a routine requires only a DB2 package. However, before you

can run the program as a stand-alone program, you need to bind a DB2 plan for it.

When you are ready to test your programs as Java routines, include a JSPDEBUG

DD statement in your startup procedure for the stored procedure address space.

This DD statement specifies a data set to which DB2 writes debug information as

the Java routines execute.

Another technique that you can use for debugging is to include

System.out.println and System.err.println calls in your program to write

messages to the STDERR and STDOUT files. If you are using the Java SDK 1.3.1,

you need to include JAVAOUT and JAVAERR DD statements in the WLM address

space startup procedure to indicate the z/OS UNIX System Services data sets to

which STDOUT and STDERR map. The DD statements look like these:

//JAVAOUT DD PATH=’/u/db281/javasp/JAVAOUT.TXT’,

// PATHOPTS=(ORDWR,OCREAT,OAPPEND),

// PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP,SIROTH,SIWOTH)

//JAVAERR DD PATH=’/u/db281/javasp/JAVAERR.TXT’,

// PATHOPTS=(ORDWR,OCREAT,OAPPEND),

// PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP,SIROTH,SIWOTH)

The z/OS UNIX System Services directories that are specified by the PATH

parameter must exist on your system. The PATHOPTS options OCREAT and

OAPPEND cause the files that are specified in the PATH parameter to be created if

they do not exist, or to be appended if they exist.

If you are using the Java SDK 1.4.1 or later, and you do not include JAVAOUT and

JAVAERR DD statements in your WLM address space startup procedure, STDERR

output is written to the directory that is specified by the WORK_DIR parameter in

the JAVAENV data set. If no WORK_DIR parameter is specified, output goes to the

default directory.

218 Application Programming Guide and Reference for Java™

Chapter 6. Preparing and running JDBC and SQLJ programs

DB2 UDB for z/OS Java programs run in the z/OS UNIX System Services

environment. The following topics contain information about preparing and

running Java programs:

v “Preparing JDBC programs for execution”

v “Preparing SQLJ programs for execution under the DB2 Universal JDBC Driver”

v “Preparing SQLJ programs for execution under the JDBC/SQLJ Driver for

OS/390 and z/OS” on page 239

v “Preparing Java routines for execution” on page 245

v “Running JDBC and SQLJ programs” on page 249

Preparing JDBC programs for execution

Preparing a Java program that contains only JDBC methods is the same as

preparing any other Java program. You compile the program using the javac

command. No precompile or bind steps are required. For example, to prepare the

Sample01.java program for execution, execute this command from the

/usr/lpp/db2810/ directory:

javac Sample01.java

Preparing SQLJ programs for execution under the DB2 Universal

JDBC Driver

To prepare an SQLJ application to run in a JVM, and with the DB2 Universal JDBC

Driver, follow these steps:

1. Translate the source code to produce generated Java source code and serialized

profiles, and compile the generated source code to product Java bytecodes.

2. Customize the serialized profiles to produce customized serialized profiles and

DB2 packages.

Figure 65 on page 220 shows the steps of the program preparation process for a

program that uses the DB2 Universal JDBC Driver.

© Copyright IBM Corp. 1998, 2006 219

Translating and compiling SQLJ source code under the DB2

Universal JDBC Driver

The first steps in preparing an executable SQLJ program are to use the SQLJ

translator to generate a Java source program, compile the Java source program,

and produce zero or more serialized profiles. You issue the sqlj command from

the z/OS UNIX System Services command line to invoke the SQLJ translator. The

SQLJ translator runs without connecting to DB2.

Serialized
profile

Customized
serialized

profile

Modified
source

Source
program

SQLJ
translator

Compile

Java
class
file

Customize

Four
packages

Figure 65. The SQLJ program preparation process for the DB2 Universal JDBC Driver

220 Application Programming Guide and Reference for Java™

sqlj syntax

�� sqlj

-help

-dir=directory

-d=directory

-props=properties-file
 �

�
 -compile=true

-compile=false

 -linemap=NO

-linemap=YES

 -smap=NO

-smap=YES

-encoding=encoding

-db2optimize

�

�
-ser2class

-status

-version

-C-help

�

(1)

-Ccompiler-option

 �

�

�

-JJVM-option

�

SQLJ-source-file-name

 ��

Notes:

1 The -C-classpath and -C-sourcepath options are used by the SQLJ translator as well as by the

Java compiler.

sqlj parameter descriptions

-help

Specifies that the SQLJ translator describes each of the options that the

translator supports. If any other options are specified with -help, they are

ignored.

-dir=directory

Specifies the name of the directory into which SQLJ puts .java files that are

generated by the translator. The default directory is the directory that contains

the SQLJ source files.

 The translator uses the directory structure of the SQLJ source files when it puts

the generated files in directories. For example, suppose that you want the

translator to process two files:

v file1.sqlj, which is not in a Java package

v file2.sqlj, which is in Java package sqlj.test

Also suppose that you specify the parameter -dir=/src when you invoke the

translator. The translator puts the Java source file for file1.sqlj in directory /src

and puts the Java source file for file2.sqlj in directory /src/sqlj/test.

-d=directory

Specifies the name of the directory into which SQLJ puts the binary files that

are generated by the translator. These files include:

v The serialized profile files (.ser files)

v If the sqlj command invokes the Java compiler, the class files that are

generated by the compiler (.class files)

The default directory is the directory that contains the SQLJ source files.

Chapter 6. Preparing and running JDBC and SQLJ programs 221

The translator uses the directory structure of the SQLJ source files when it puts

the generated files in directories. For example, suppose that you want the

translator to process two files:

v file1.sqlj, which is not in a Java package

v file2.sqlj, which is in Java package sqlj.test

Also suppose that you specify the parameter -d=/src when you invoke the

translator. The translator puts the serialized profiles for file1.sqlj in directory

/src and puts the serialized profiles for file2.sqlj in directory /src/sqlj/test.

-props=properties-file

Specifies the name of a file from which the SQLJ translator is to obtain a list of

options.

-compile=true|false

Specifies whether the SQLJ translator compiles the generated Java source into

bytecodes.

true

The translator compiles the generated Java source code. This is the default.

false

The translator does not compile the generated Java source code.

-linemap=no|yes

Specifies whether line numbers in Java exceptions match line numbers in the

SQLJ source file (the .sqlj file), or line numbers in the Java source file that is

generated by the SQLJ translator (the .java file).

no Line numbers in Java exceptions match line numbers in the Java source

file. This is the default.

yes

Line numbers in Java exceptions match line numbers in the SQLJ source

file.

-smap=no|yes

Specifies whether the SQLJ translator generates a source map (SMAP) file for

each SQLJ source file. An SMAP file is used by some Java language debug

tools. This file maps lines in the SQLJ source file to lines in the Java source file

that is generated by the SQLJ translator. The file is in the Unicode UTF-8

encoding scheme. Its format is described by Original Java Specification Request

(JSR) 45, which is available from this web site:

http://www.jcp.org

no Do not generated SMAP files. This is the default.

yes

Generate SMAP files. An SMAP file name is SQLJ-source-file-
name.java.smap. The SQLJ translator places the SMAP file in the same

directory as the generated Java source file.

-encoding=encoding-name

Specifies the encoding of the source file. Examples are JIS or EUC. If this

option is not specified, the default converter for the operating system is used.

-db2optimize

Specifies that the SQLJ translator generates code for a connection context class

that is optimized for DB2. -db2optimize optimizes the code for the

user-defined context but not the default context. When you run the SQLJ

222 Application Programming Guide and Reference for Java™

|
|
|
|

translator with the -db2optimize option, the DB2 Universal JDBC Driver file

db2jcc.jar must be in the CLASSPATH for compiling the generated Java

application.

-ser2class

Specifies that the SQLJ translator converts .ser files to .class files.

-status

Specifies that the SQLJ translator displays status messages as it runs.

-version

Specifies that the SQLJ translator displays the version of the DB2 Universal

JDBC Driver. The information is in this form:

IBM SQLJ xxxx.xxxx.xx

-C-help

Specifies that the SQLJ translator displays help information for the Java

compiler.

-Ccompiler-option

Specifies a valid Java compiler option that begins with a dash (-). Do not

include spaces between -C and the compiler option. If you need to specify

multiple compiler options, precede each compiler option with -C. For example:

-C-g -C-verbose

All options are passed to the Java compiler and are not used by the SQLJ

translator, except for the following options:

-classpath

Specifies the user class path that is to be used by the SQLJ translator

and the Java compiler. This value overrides the CLASSPATH

environment variable.

-sourcepath

Specifies the source code path that the SQLJ translator and the Java

compiler search for class or interface definitions. The SQLJ translator

searches for .sqlj and .java files only in directories, not in JAR or zip

files.

-JJVM-option

Specifies an option that is to be passed to the Java virtual machine (JVM) in

which the sqlj command runs. The option must be a valid JVM option that

begins with a dash (-). Do not include spaces between -J and the JVM option.

If you need to specify multiple JVM options, precede each compiler option

with -J. For example:

-J-Xmx128m -J-Xinitacsh512

SQLJ-source-file-name

Specifies a list of SQLJ source files to be translated. This is a required

parameter. All SQLJ source file names must have the extension .sqlj.

sqlj output

For each source file, program-name.sqlj, the SQLJ translator produces the following

files:

v The generated source program

The generated source file is named program-name.java.

v A serialized profile file for each connection context class that is used in an SQLJ

executable clause

A serialized profile name is of the following form:

Chapter 6. Preparing and running JDBC and SQLJ programs 223

|
|
|

|
|

program-name_SJProfileIDNumber.ser

v If the SQLJ translator invokes the Java compiler, the class files that the compiler

generates.

Customizing an SQLJ serialized profile under the DB2

Universal JDBC Driver

After you use the SQLJ translator to generate serialized profiles for an SQLJ

program, you need to customize each serialized profile.

Execute the db2sqljcustomize command on the z/OS UNIX System Services

command line to produce a customized serialized profile, and optionally, to

produce DB2 packages at a specified data source. You can produce the customized

serialized profile and DB2 packages on any data source against which a DB2

Universal JDBC Driver runs.You can also use the db2sqljcustomize command to

do online checking.

By default, db2sqljcustomize binds DB2 packages. However, you can disable

automatic creation of packages and use the db2sqljbind utility to bind packages

later. See “Binding the packages for the DB2 Universal JDBC Driver” on page 264

for a description of db2sqljbind.

db2sqljcustomize authorization

To execute this command, you must use a privilege set of the process that includes

one of the following authorities:

v SYSADM authority

v DBADM authority

v If the package does not exist, the BINDADD privilege, and one of the following

privileges:

– CREATEIN privilege

– PACKADM authority on the collection or on all collections
v If the package exists, the BIND privilege on the package

224 Application Programming Guide and Reference for Java™

db2sqljcustomize syntax

�� db2sqljcustomize

-help

�

-url

jdbc:db2://server

/database

:port

:

property=value;

-datasource

JNDI-name

 �

�

-user

user-ID

-password

password

 -automaticbind YES

-automaticbind

NO

-pkgversion

AUTO

-pkgversion

version-id

�

�
-bindoptions

"

options-string

"

-storebindoptions

-collection

collection-name
 �

�
 -onlinecheck YES

-onlinecheck

NO

-qualifier

qualifier-name

-rootpkgname

package-name-stem

-singlepkgname

package-name

-longpkgname

�

�
 -staticpositioned NO

-staticpositioned

YES

�

-tracelevel

TRACE_SQLJ

-tracefile

file-name

,

-tracelevel

TRACE_NONE

TRACE_CONNECTION_CALLS

TRACE_STATEMENT_CALLS

TRACE_RESULT_SET_CALLS

TRACE_DRIVER_CONFIGURATION

TRACE_CONNECTS

TRACE_DRDA_FLOWS

TRACE_RESULT_SET_META_DATA

TRACE_PARAMETER_META_DATA

TRACE_DIAGNOSTICS

TRACE_SQLJ

TRACE_XA_CALLS

TRACE_ALL

�

�

�

serialized-profile-name

file-name.grp

��

options-string:

Chapter 6. Preparing and running JDBC and SQLJ programs 225

�� DB2-for-z/OS-options

DB2-for-Linux-UNIX-and-Windows-options
 ��

226 Application Programming Guide and Reference for Java™

DB2 UDB for z/OS options:

��

 ACTION(REPLACE)

(1)

REPLVER(version-id)

ACTION(ADD)

DBPROTOCOL(DRDA)

DBPROTOCOL(PRIVATE)

DEGREE(1)

DEGREE(ANY)

�

�
 EXPLAIN(NO)

EXPLAIN(YES)

 IMMEDWRITE(NO)

IMMEDWRITE(PH1)

IMMEDWRITE(YES)

 ISOLATION(RR)

ISOLATION(RS)

ISOLATION(CS)

ISOLATION(UR)

 NOREOPT(VARS)

REOPT(VARS)

�

�
OPTHINT(hint-ID)

OWNER(authorization-ID)

�

,

PATH(

schema-name

)

USER

 �

�

QUALIFIER(qualifier-name)

 RELEASE(COMMIT)

RELEASE(DEALLOCATE)

 SQLERROR(NOPACKAGE)

SQLERROR(CONTINUE)

�

�
 VALIDATE(RUN)

VALIDATE(BIND)

��

Notes:

1 These options can be specified in any order.

Chapter 6. Preparing and running JDBC and SQLJ programs 227

DB2 UDB for Linux, UNIX and Windows options

��
 (1) BLOCKING UNAMBIG

BLOCKING ALL

BLOCKING NO

DEC 15

DEC 31

 DEGREE 1

DEGREE ANY

 EXPLAIN NO

EXPLAIN YES

 EXPLSNAP NO

EXPLSNAP ALL

EXPLSNAP YES

�

�
 FEDERATED NO

FEDERATED YES

FUNCPATH schema-name

 INSERT DEF

INSERT BUF

 ISOLATION CS

ISOLATION RR

ISOLATION RS

ISOLATION UR

�

�
OWNER authorization-ID

QUALIFIER qualifier-name

QUERYOPT optimization-level
 �

�
 SQLERROR NOPACKAGE

SQLERROR CONTINUE

 SQLWARN YES

SQLWARN NO

 STATICREADONLY NO

STATICREADONLY YES

 VALIDATE RUN

VALIDATE BIND

��

Notes:

1 These options can be specified in any order.

db2sqljcustomize parameter descriptions

-help

Specifies that the SQLJ customizer describes each of the options that the

customizer supports. If any other options are specified with -help, they are

ignored.

-url

Specifies the URL for the data source for which the profile is to be customized.

A connection is established to the data source that this URL represents if the

-automaticbind or -onlinecheck option is specified as YES or defaults to YES.

The variable parts of the -url value are:

server

The domain name or IP address of the MVS system on which the DB2

subsystem resides.

port

The TCP/IP server port number that is assigned to the DB2 subsystem.

The default is 446.

database

A name for the database server for which the profile is to be customized.

 If the connection is to a DB2 for z/OS server, database is the DB2 location

name that is defined during installation. All characters in this value must

be uppercase characters. You can determine the location name by executing

the following SQL statement on the server:

SELECT CURRENT SERVER FROM SYSIBM.SYSDUMMY1;

property=value;

A property for the JDBC connection. For the definitions of these properties,

see “Properties for the DB2 Universal JDBC Driver” on page 185.

228 Application Programming Guide and Reference for Java™

##

-datasource JNDI-name

Specifies the logical name of a DataSource object that was registered with

JNDI. The DataSource object represents the data source for which the profile is

to be customized. A connection is established to the data source if the

-automaticbind or -onlinecheck option is specified as YES or defaults to YES.

Specifying -datasource is an alternative to specifying -url. The DataSource

object must represent a connection that uses Universal Driver type 4

connectivity.

-user user-ID

Specifies the user ID to be used to connect to the data source for online

checking or binding a package. You must specify -user if you specify -url. You

must specify -user if you specify -datasource, and the DataSource object that

JNDI-name represents does not contain a user ID.

-password password

Specifies the password to be used to connect to the data source for online

checking or binding a package. You must specify -password if you specify -url.

You must specify -password if you specify -datasource, and the DataSource

object that JNDI-name represents does not contain a password.

-automaticbind YES|NO

Specifies whether the customizer binds DB2 packages at the data source that is

specified by the -url parameter.

 The default is YES.

 The number of packages and the isolation levels of those packages are

controlled by the -rootpkgname and -singlepkgname options.

 Before the bind operation can work, the following conditions need to be met:

v TCP/IP and DRDA must be installed at the target data source.

v Valid -url, -username, and -password values must be specified.

v The -username value must have authorization to bind a package at the

target data source. See the Authorization topic under BIND PACKAGE

Chapter 2 of DB2 Command Reference for the authorization that is needed to

bind a package on DB2 UDB for z/OS.

-pkgversion AUTO|version-id

Specifies the package version that is to be used when packages are bound at

the server for the serialized profile that is being customized. db2sqljcustomize

stores the version ID in the serialized profile and in the DB2 package.

Run-time version verification is based on the consistency token, not the version

name. To automatically generate a version name that is based on the

consistency token, specify -pkgversion AUTO.

 The default is that there is no version.

-bindoptions options-string

Specifies a list of options, separated by spaces. These options have the same

function as DB2 precompile and bind options with the same names. If you are

preparing your program to run on a DB2 UDB for z/OS system, specify DB2

UDB for z/OS options. If you are preparing your program to run on a DB2

UDB for Linux, UNIX and Windows system, specify DB2 UDB for Linux,

UNIX and Windows options.

 Notes on bind options:

v Specify ISOLATION only if you also specify the -singlepkgname option.

Chapter 6. Preparing and running JDBC and SQLJ programs 229

|
|
|
|
|
|
|

|

Important: Specify only those program preparation options that are

appropriate for the data source at which you are binding a package. Some

values and defaults for the DB2 Universal JDBC Driver are different from the

values and defaults for DB2. Check the preparation options under

“Customizing an SQLJ serialized profile under the DB2 Universal JDBC

Driver” on page 224 to determine which options you can use. For information

on the meanings of DB2 UDB for z/OS bind options, see DB2 Command

Reference. For information on the VERSION precompile option, see DB2

Application Programming and SQL Guide. For information on precompiler or

bind options for DB2 UDB for Linux, UNIX and Windows, see DB2 Universal

Database Command Reference.

-storebindoptions

Specifies that values for the -bindoptions and -staticpositioned parameters are

stored in the serialized profile. If db2sqljbind is invoked without the

-bindoptions or -staticpositioned parameter, the values that are stored in the

serialized profile are used during the bind operation. When multiple serialized

profiles are specified for one invocation of db2sqljcustomize, the parameter

values are stored in each serialized profile. The stored values are displayed in

the output from the db2sqljprint utility. See “JDBC and SQLJ problem

diagnosis with the DB2 Universal JDBC Driver” on page 317 for more

information about db2sqljprint.

-collection collection-name

The qualifier for the packages that db2sqljcustomize binds. db2sqljcustomize

stores this value in the customized serialied profile, and it is used when the

associated packages are bound. If you do not specify this parameter,

db2sqljcustomize uses a collection ID of NULLID.

-onlinecheck YES|NO

Specifies whether online checking of data types in the SQLJ program is to be

performed. The -url option determines the data source that is to be used for

online checking. The default is YES if the -url parameter is specified.

Otherwise, the default is NO.

-qualifier qualifier-name

Specifies the qualifier that is to be used for unqualified objects in the SQLJ

program during online checking. This value is not used as the qualifier when

the packages are bound.

-rootpkgname|-singlepkgname

Specifies the names for the packages that are associated with the program. If

-automaticbind is NO, these package names are used when db2sqljbind runs.

The meanings of the parameters are:

-rootpkgname package-name-stem

Specifies that the customizer creates four packages, one for each of the four

DB2 isolation levels. The names for the four packages are:

package-name-stem1 For isolation level UR

package-name-stem2 For isolation level CS

package-name-stem3 For isolation level RS

package-name-stem4 For isolation level RR

If -longpkgname is not specified, package-name-stem must be an

alphanumeric string of seven or fewer bytes.

 If -longpkgname is specified, package-name-stem must be an alphanumeric

string of 127 or fewer bytes.

230 Application Programming Guide and Reference for Java™

|
|
|
|
|
|
|
|
|
|

#
#

#
#

-singlepkgname package-name

Specifies that the customizer creates one package, with the name

package-name. If you specify this option, your program can run at only one

isolation level. You specify the isolation level for the package by specifying

the ISOLATION option in the -bindoptions options string.

 If -longpkgname is not specified, package-name must be an alphanumeric

string of eight or fewer bytes.

 If -longpkgname is specified, package-name must be an alphanumeric string

of 128 or fewer bytes.

 Using the -singlepkgname option is not recommended.

If you do not specify -rootpkgname or -singlepkgname, db2sqljcustomize

generates four package names that are based on the serialized profile name. A

serialized profile name is of the following form:

program-name_SJProfileIDNumber.ser

The four generated package names are of the following form:

Bytes-from-program-nameIDNumberPkgIsolation

Table 49 shows the parts of a generated package name and the number of

bytes for each part.

 The maximum length of a package name is maxlen. maxlen is 8 if -longpkgname

is not specified. maxlen is 128 if -longpkgname is specified.

 Table 49. Parts of a package name that is generated by db2sqljcustomize

Package name part Number of bytes Value

Bytes-from-program-name m=min(Length(program-name),

maxlen–1–Length(IDNumber))

First m bytes of program-name, in

uppercase

IDNumber Length(IDNumber) IDNumber

PkgIsolation 1 1, 2, 3, or 4. This value represents the

transaction isolation level for the

package. See Table 50.

 Table 50 shows the values of the PkgIsolation portion of a package name that is

generated by db2sqljcustomize.

 Table 50. PkgIsolation values and associated isolation levels

PkgNumber value Isolation level for package

1 Uncommitted read (UR)

2 Cursor stability (CS)

3 Read stability (RS)

4 Repeatable read (RR)

Example: Suppose that a profile name is ThisIsMyProg_SJProfile111.ser. The

db2sqljcustomize option -longpkgname is not specified. Therefore,

Bytes-from-program-name is the first four bytes of ThisIsMyProg, translated to

uppercase, or THIS. IDNumber is 111. The four package names are:

Chapter 6. Preparing and running JDBC and SQLJ programs 231

#
#

#
#

#
#

##

###

##
#
#
#

###

###
#
#
#

#

THIS1111

THIS1112

THIS1113

THIS1114

Example: Suppose that a profile name is ThisIsMyProg_SJProfile111.ser. The

db2sqljcustomize option -longpkgname is specified. Therefore,

Bytes-from-program-name is ThisIsMyProg, translated to uppercase, or

THISISMYPROG. IDNumber is 111. The four package names are:

THISISMYPROG1111

THISISMYPROG1112

THISISMYPROG1113

THISISMYPROG1114

 Example: Suppose that a profile name is A_SJProfile0.ser. Bytes-from-program-
name is A. IDNumber is 0. Therefore, the four package names are:

A01

A02

A03

A04

Letting db2sqljcustomize generate package names is not recommended. If any

generated package names are the same as the names of existing packages,

db2sqljcustomize overwrites the existing packages. To ensure uniqueness of

package names, specify -rootpkgname.

-longpkgname

Specifies that the names of the DB2 packages that db2sqljcustomize generates

can be up to 128 bytes. Use this option only if you are binding packages at a

server that supports long package names. If you specify -singlepkgname or

-rootpkgname, you must also specify -longpkgname under the following

conditions:

v The argument of -singlepkgname is longer than eight bytes.

v The argument of -rootpkgname is longer than seven bytes.

-staticpositioned NO|YES

For iterators that are declared in the same source file as positioned UPDATE

statements that use the iterators, specifies whether the positioned UPDATEs

are executed as statically bound statements. The default is NO. NO means that

the positioned UPDATEs are executed as dynamically prepared statements.

-tracefile file-name

Enables tracing and identifies the output file for trace information. This option

should be specified only under the direction of your IBM service

representative.

-tracelevel

If -tracefile is specified, indicates what to trace while db2sqljcustomize runs.

The default is TRACE_SQLJ. This option should be specified only under the

direction of your IBM service representative.

serialized-profile-name|file-name.grp

Specifies the names of one or more serialized profiles that are to be

customized. A serialized profile name is of the following form:

program-name_SJProfileIDNumber.ser

You can specify the serialized profile name with or without the .ser extension.

232 Application Programming Guide and Reference for Java™

#
#
#
#

#
#
#
#

#

#
#
#
#
#
#
#
#

program-name is the name of the SQLJ source program, without the extension

.sqlj. n is an integer between 0 and m-1, where m is the number of serialized

profiles that the SQLJ translator generated from the SQLJ source program.

 You can specify serialized profile names in one of the following ways:

v List the names in the db2sqljcustomize command. Multiple serialized profile

names must be separated by spaces.

v Specify the serialized profile names, one on each line, in a file with the name

file-name.grp, and specify file-name.grp in the db2sqljcustomize command.

If you specify more than one serialized profile name, and if you specify or use

the default value of -automaticbind YES, db2sqljcustomize binds a single DB2

package from the profiles. When you use db2sqljcustomize to create a single

DB2 package from multiple serialized profiles, you must also specify the

-rootpkgname or -singlepkgname option.

 If you specify more than one serialized profile name, and you specify

-automaticbind NO, if you want to bind the serialized profiles into a single

DB2 package when you run db2sqljbind, you need to specify the same list of

serialized profile names, in the same order, in db2sqljcustomize and

db2sqljbind.

db2sqljcustomize output

When db2sqljcustomize runs, it creates a customized serialized profile. It also

creates DB2 packages, if the automaticbind value is YES.

db2sqljcustomize usage notes

Online checking is always recommended: It is highly recommended that you use

online checking when you customize your serialized profiles. Online checking

determines information about the data types and lengths of DB2 host variables,

and is especially important for the following items:

v Predicates with java.lang.String host variables and CHAR columns

Unlike character variables in other host languages, Java String host variables are

not declared with a length attribute. To optimize a query properly that contains

character host variables, DB2 needs the length of the host variables. For

example, suppose that a query has a predicate in which a String host variable is

compared to a CHAR column, and an index is defined on the CHAR column. If

DB2 cannot determine the length of the host variable, it might do a table space

scan instead of an index scan. Online checking avoids this problem by providing

the lengths of the corresponding character columns.

v Predicates with java.lang.String host variables and GRAPHIC columns

Without online checking, DB2 might issue a bind error (SQLCODE -134) when it

encounters a predicate in which a String host variable is compared to a

GRAPHIC column.

v CHAR columns in the result table of an SQLJ SELECT statement at a remote

server (db2profc only):

The JDBC driver cannot describe a SELECT statement that is run at a remote

server. Therefore, without online checking, the driver cannot determine the exact

data types and lengths of the result table columns. For character columns, the

driver assigns a data type and length of VARCHAR(512). Therefore, if you do

not perform online checking, and you select data from a CHAR column, the

result is a character string of length 512, which is not the desired result.

v Column names in the result table of an SQLJ SELECT statement at a remote

server (db2sqljcustomize only):

Chapter 6. Preparing and running JDBC and SQLJ programs 233

|

|
|

|
|

|
|

Without online checking, the driver cannot determine the column names for the

result table of a remote SELECT.

Customizing multiple serialized profiles together: Multiple serialized profiles can

be customized together to create a single DB2 package. If you do this, and if you

specify -staticpostioned YES, any positioned UPDATE or DELETE statement that

references a cursor that is declared earlier in the package executes statically, even if

the UPDATE or DELETE statement is in a different source file from the cursor

declaration. If you want -staticpositioned YES behavior when your program

consists of multiple source files, you need to order the profiles in the

db2sqljcustomize command to cause cursor declarations to be ahead of positioned

UPDATE or DELETE statements in the package. To do that, list profiles that

contain SELECT statements that assign result tables to iterators before profiles that

contain the positioned UPDATE or DELETE statements that reference those

iterators.

Using a customized serialized profile at one data source that was customized at

another data source: You can run db2sqljcustomize to produce a customized

serialized profile for an SQLJ program at one data source, and then use that profile

at another data source. You do this by running db2sqljbind multiple times on

customized serialized profiles that you created by running db2sqljcustomize once.

When you run the programs at these data sources, the DB2 objects that the

programs access must be identical at every data source. For example, tables at all

data sources must have the same encoding schemes and the same columns with

the same data types.

Using the -collection parameter: db2sqljcustomize stores the DB2 collection name

in each customized serialized profile that it produces. When an SQLJ program is

executed, the driver uses the collection name that is stored in the customized

serialized profile to search for packages to execute. The name that is stored in the

customized serialized profile is determined by the value of the -collection

parameter. Only one collection ID can be stored in the serialized profile. However,

you can bind the same serialized profile into multiple package collections by

specifying the COLLECTION option in the -bindoptions parameter. To execute a

package that is in a collection other than the collection that is specified in the

serialized profile, include a SET CURRENT PACKAGESET statement in the

program.

Using the VERSION parameter: Use the VERSION parameter to bind two or more

versions of a package for the same SQLJ program into the same collection. You

might do this if you have changed an SQLJ source program, and you want to run

the old and new versions of the program.

For example, if you have an SQLJ program that has been running on the

JDBC/SQLJ Driver for OS/390 and z/OS, and you want a version of the program

that runs on the DB2 Universal JDBC Driver, as well as the existing version, you

need to follow these steps:

1. Change the code in your source program that connects to the data source to

point to the new driver.

2. Translate the source program to create a new serialized profile. Ensure that you

do not overwrite your original serialized profile.

3. Run db2sqljcustomize to customize the serialized profile and create DB2

packages with the same package names and in the same collection as the

original packages. Do this by using the same values for -rootpkgname and

-collection when you bind the new packages that you used when you created

234 Application Programming Guide and Reference for Java™

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

|
|

|
|
|
|

the original packages. Specify the VERSION option in the -bindoptions

parameter to put a version ID in the new customized serialized profile and in

the new packages.

It is essential that you specify the VERSION option when you perfom this step.

If you do not, you overwrite your original packages.

When you run the old version of the program that uses the JDBC/SQLJ Driver for

OS/390 and z/OS, DB2 loads the old versions of the packages. When you run the

new version of the program that uses the DB2 Universal JDBC Driver, DB2 loads

the new versions of the packages.

Binding packages after running db2sqljcustomize

Applications that run with the DB2 Universal JDBC Driver require packages but no

plans. If the db2sqljcustomize -automaticbind option is specified as YES or

defaults to YES, db2sqljcustomize binds packages for you at the data source that

you specify in the -url parameter. However, if automaticbind is NO, if a bind fails

when db2sqljcustomize runs, or if you want to create identical packages at

multiple locations for the same serialized profile, you can use the db2sqljbind

utility to bind packages.

Chapter 6. Preparing and running JDBC and SQLJ programs 235

|
|
|

|
|

|
|
|
|

db2sqljbind syntax

�� db2sqljbind

-help

�

 -url jdbc:db2://server /database

:port

:

property=value;

 �

� -user user-ID -password password

-bindoptions

"

options-string

"
 �

�
 -staticpositioned NO

-staticpositioned

YES

�

�

�

-tracelevel

TRACE_SQLJ

-tracefile

file-name

,

-tracelevel

TRACE_NONE

TRACE_CONNECTION_CALLS

TRACE_STATEMENT_CALLS

TRACE_RESULT_SET_CALLS

TRACE_DRIVER_CONFIGURATION

TRACE_CONNECTS

TRACE_DRDA_FLOWS

TRACE_RESULT_SET_META_DATA

TRACE_PARAMETER_META_DATA

TRACE_DIAGNOSTICS

TRACE_SQLJ

TRACE_XA_CALLS

TRACE_ALL

 �

�

�

serialized-profile-name

��

db2sqljbind parameter descriptions

-help

Specifies that db2sqljbind describes each of the options that it supports. If any

other options are specified with -help, they are ignored.

-url

Specifies the URL for the data source for which the profile is to be customized.

This URL is used if the -automaticbind or -onlinecheck option is YES. The

variable parts of the -url value are:

236 Application Programming Guide and Reference for Java™

server

The domain name or IP address of the MVS system on which the DB2

subsystem resides.

port

The TCP/IP server port number that is assigned to the DB2 subsystem.

The default is 446.

database

A name for the database server for which the profile is to be customized.

 If the connection is to a DB2 for z/OS server, database is the DB2 location

name that is defined during installation. All characters in this value must

be uppercase characters. You can determine the location name by executing

the following SQL statement on the server:

SELECT CURRENT SERVER FROM SYSIBM.SYSDUMMY1;

property=value;

A property for the JDBC connection. For the definitions of these properties,

see “Properties for the DB2 Universal JDBC Driver” on page 185.

-user user-ID

Specifies the user ID to be used to connect to the data source for binding the

package.

-password password

Specifies the password to be used to connect to the data source for binding the

package.

-bindoptions options-string

Specifies a list of options, separated by spaces. These options have the same

function as DB2 precompile and bind options with the same names. If you are

preparing your program to run on a DB2 UDB for z/OS system, specify DB2

UDB for z/OS options. If you are preparing your program to run on a DB2

UDB for Linux, UNIX and Windows system, specify DB2 UDB for Linux,

UNIX and Windows options.

 Notes on bind options:

v Specify VERSION only if the following conditions are true:

– If you are binding a package at a DB2 UDB for Linux, UNIX and

Windows system, the system is at Version 8 or later.

– You rerun the translator on a program before you bind the associated

package with a new VERSION value.

Important: Specify only those program preparation options that are

appropriate for the data source at which you are binding a package. Some

values and defaults for the DB2 Universal JDBC Driver are different from the

values and defaults for DB2. Check the preparation options in the previous

syntax diagram to determine which options you can use. For information on

the meanings of DB2 UDB for z/OS bind options, see DB2 Command Reference.

For information on the VERSION precompile option, see DB2 Application

Programming and SQL Guide. For information on precompiler or bind options

for DB2 UDB for Linux, UNIX and Windows, see DB2 Universal Database

Command Reference.

-staticpositioned NO|YES

For iterators that are declared in the same source file as positioned UPDATE

statements that use the iterators, specifies whether the positioned UPDATEs

are executed as statically bound statements. The default is NO. NO means that

the positioned UPDATEs are executed as dynamically prepared statements.

Chapter 6. Preparing and running JDBC and SQLJ programs 237

This value must be the same as the -staticpositioned value for the previous

db2sqljcustomize invocation for the serialized profile.

-tracefile file-name

Enables tracing and identifies the output file for trace information. This option

should be specified only under the direction of your IBM service

representative.

-tracelevel

If -tracefile is specified, indicates what to trace while db2sqljcustomize runs.

The default is TRACE_SQLJ. This option should be specified only under the

direction of your IBM service representative.

serialized-profile-name

Specifies the name of one or more serialized profiles from which the package is

bound. A serialized profile name is of the following form:

program-name_SJProfileIDNumber.ser

program-name is the name of the SQLJ source program, without the extension

.sqlj. n is an integer between 0 and m-1, where m is the number of serialized

profiles that the SQLJ translator generated from the SQLJ source program.

 If you specify more than one serialized profile name to bind a single DB2

package from several serialized profiles, you must have specified the same

serialized profile names, in the same order, when you ran db2sqljcustomize.

db2sqljbind usage notes

Package names produced by db2sqljbind: The names of the packages that are

created by db2sqljbind are the names that you specified using the-rootpkgname or

-singlepkgname parameter when you ran db2sqljcustomize. If you did not specify

-rootpkgname or -singlepkgname, the package names are the first seven bytes of

the profile name, appended with the isolation level character.

DYNAMICRULES value for db2sqljbind: The DYNAMICRULES bind option

determines a number of run-time attributes for a DB2 package. Two of those

attributes are the authorization ID that is used to check authorization, and the

qualifier that is used for unqualified objects. To ensure the correct authorization for

dynamically executed positioned UPDATE and DELETE statements in SQLJ

programs, db2sqljbind always binds the DB2 packages with the

DYNAMICRULES(BIND) option. You cannot modify this option. The

DYNAMICRULES(BIND) option causes the SET CURRENT SQLID statement to

have no impact on an SQLJ program, because those statements affect only dynamic

statements that are bound with DYNAMICRULES values other than BIND.

With DYNAMICRULES(BIND), unqualified table, view, index, and alias names in

dynamic SQL statements are implicitly qualified with value of the bind option

QUALIFIER. If you do not specify QUALIFIER, DB2 uses the authorization ID of

the package owner as the implicit qualifier. If this behavior is not suitable for your

program, you can use one of the following techniques to set the correct qualifier:

v Force positioned UDPATE and DELETE statements to execute statically. You can

use the -staticpositioned YES option of db2sqljcustomize or db2sqljbind to do

this if the cursor (iterator) for a positioned UPDATE or DELETE statement is in

the same package as the positioned UPDATE or DELETE statement. See

“db2sqljcustomize parameter descriptions” on page 228 for information on how

to ensure that the cursor and the associated statement are in the same package.

v Fully qualify DB2 table names in positioned UPDATE and positioned DELETE

statements.

238 Application Programming Guide and Reference for Java™

Preparing SQLJ programs for execution under the JDBC/SQLJ Driver

for OS/390 and z/OS

To prepare an SQLJ application to run in a JVM, and with the JDBC/SQLJ Driver

for OS/390 and z/OS, follow these steps:

1. Translate the source code to produce generated Java source code and serialized

profiles, and compile the generated source code to product Java bytecodes.

2. Customize the serialized profiles. This an optional, but highly recommended

step. Some SQLJ programs do not operate correctly unless they are customized.

3. Bind plans or packages.

Figure 66 shows the steps of the program preparation process for a program that

uses the JDBC/SQLJ Driver for OS/390 and z/OS.

Translating and compiling SQLJ source code

The first steps in preparing an executable SQLJ program are to use the SQLJ

translator to generate a Java source program, compile the Java source program,

Serialized
profile

Customized
serialized

profile

Modified
source

Source
program

SQLJ
translator

Compile

Java
class
file

Customize

Four
DBRMs

Bind
package

Bind
plan Plan

Package

Figure 66. The SQLJ program preparation process for the JDBC/SQLJ Driver for OS/390 and

z/OS

Chapter 6. Preparing and running JDBC and SQLJ programs 239

and produce zero or more serialized profiles. You issue the sqlj command from

the z/OS UNIX System Services command line to invoke the JDBC/SQLJ Driver

for OS/390 and z/OS SQLJ translator. The SQLJ translator runs without connecting

to DB2.

sqlj syntax

�� sqlj

-help

-dir=directory

-d=directory

-props=properties-file
 �

�
 -compile=true

-compile=false

 -warn=all

-warn=none

-warn=verbose

-warn=nonverbose

-warn=portable

-warn=nonportable

file-list

��

sqlj parameter descriptions

-help

Specifies that the SQLJ translator describes each of the options that the

translator supports. If any other options are specified with -help, they are

ignored.

-dir=directory

Specifies the name of the directory into which SQLJ puts .java files that are

generated by the translator. The default directory is the directory that contains

the SQLJ source files.

 The translator uses the directory structure of the SQLJ source files when it puts

the generated files in directories. For example, suppose that you want the

translator to process two files:

v file1.sqlj, which is not in a Java package

v file2.sqlj, which is in Java package sqlj.test

Also suppose that you specify the parameter -dir=/src when you invoke the

translator. The translator puts the Java source file for file1.sqlj in directory /src

and puts the Java source file for file2.sqlj in directory /src/sqlj/test.

-d=directory

Specifies the name of the directory into which SQLJ puts the binary files that

are generated by the translator. These files include:

v The serialized profile files (.ser files)

v If the sqlj command invokes the Java compiler, the class files that are

generated by the compiler (.class files)

The default directory is the directory that contains the SQLJ source files.

The translator uses the directory structure of the SQLJ source files when it puts

the generated files in directories. For example, suppose that you want the

translator to process two files:

v file1.sqlj, which is not in a Java package

v file2.sqlj, which is in Java package sqlj.test

240 Application Programming Guide and Reference for Java™

Also suppose that you specify the parameter -d=/src when you invoke the

translator. The translator puts the serialized profiles for file1.sqlj in directory

/src and puts the serialized profiles for file2.sqlj in directory /src/sqlj/test.

-props=properties-file

Specifies the name of a file from which the SQLJ translator is to obtain a list of

options.

-compile=true|false

Specifies whether the SQLJ translator compiles the generated Java source into

bytecodes.

true

The translator compiles the generated Java source code. This is the default.

false

The translator does not compile the generated Java source code.

-warn=warning-level

Specifies the types of messages that the SQLJ translator is to return. The

meanings of the warning levels are:

all The translator displays all warnings and informational messages. This is

the default.

none

The translator displays no warnings or informational messages.

verbose

The translator displays informational messages about the semantic analysis

process.

nonverbose

The translator displays no informational messages about the semantic

analysis process.

portable

The translator displays warning messages about the portability of SQLJ

clauses.

nonportable

The translator displays no warning messages about the portability of SQLJ

clauses.

file-list

Specifies a list of SQLJ source files to be translated. This is a required

parameter. All SQLJ source file names must have the extension .sqlj.

sqlj output

For each source file, program-name.sqlj, the SQLJ translator produces the following

files:

v The generated source program

The generated source file is named program-name.java.

v A serialized profile file for each connection context class that is used in an SQLJ

executable clause

A serialized profile name is of the following form:

program-name_SJProfileIDNumber.ser

v If the SQLJ translator invokes the Java compiler, the class files that the compiler

generates.

Chapter 6. Preparing and running JDBC and SQLJ programs 241

|
|

Customizing an SQLJ serialized profile under the JDBC/SQLJ

Driver for OS/390 and z/OS

To produce standard DB2 UDB for z/OS DBRMs and a serialized profile that is

customized for DB2 UDB for z/OS, execute the db2profc command on the z/OS

UNIX System Services command line.

db2profc Syntax

��

db2profc

-help

-version

 -date=ISO

-date=USA

-date=EUR

-date=JIS

 -time=ISO

-time=USA

-time=EUR

-time=JIS

 -sql=ALL

-sql=DB2

�

�
-online=location-name

-inform=YES

-validate=CUSTOMIZE

-schema=authorization-ID

-inform=NO

-validate=RUN

 �

�
 -staticPositioned=NO

-staticPositioned=YES

-pgmversion=AUTO

-pgmversion=version-ID

-pgmname=DBRM-member-name

serialized-profile-name

��

db2profc parameter descriptions

-help

Specifies that the SQLJ customizer describes each of the options that the

customizer supports. If any other options are specified with -help, they are

ignored.

-version

Specifies that the SQLJ customizer returns the version of the SQLJ customizer.

If any other options are specified with -version, they are ignored.

-date=ISO|USA|EUR|JIS

Specifies that date values that you retrieve from an SQL table should always be

in a particular format, regardless of the format that is specified as the location

default. For a description of these formats, see Chapter 2 of DB2 SQL Reference.

The default is ISO.

-time=ISO|USA|EUR|JIS

Specifies that time values that you retrieve from an SQL table should always

be in a particular format, regardless of the format that is specified as the

location default. For a description of these formats, see Chapter 2 of DB2 SQL

Reference. The default is ISO.

-sql=ALL|DB2

Indicates whether the source program contains SQL statements other than

those that DB2 UDB for z/OS recognizes.

 ALL, which is the default, indicates that the SQL statements in the program are

not necessarily for DB2 UDB for z/OS. Use ALL for application programs

whose SQL statements must execute on a server other that DB2 UDB for z/OS.

 DB2 indicates that the DB2 bind process should interpret SQL statements and

check syntax for use by DB2 UDB for z/OS. Use DB2 when the database server

is DB2 UDB for z/OS.

242 Application Programming Guide and Reference for Java™

|

-online=location-name

Specifies that the SQLJ customizer connects to DB2 to do online checking of

data types in the SQLJ program. location-name is the location name that

corresponds to a DB2 subsystem to which the SQLJ customizer connects to do

online checking. The name of the DB2 subsystem is specified in the

DB2SQLJSSID keyword in the SQLJ run-time properties file.

 Before you can do online checking, your SQLJ/JDBC environment must

include a JDBC profile. See “Customizing the JDBC profile (optional)” on page

286 for information.

 Online checking is optional. However, to get the best mapping of Java data

types to DB2 data types, it is recommended that you request online checking.

-schema=authorization-ID

Specifies the authorization ID that the SQLJ customizer uses to qualify

unqualified DB2 object names in the SQLJ program during online checking.

-inform=YES|NO

Indicates whether informational messages are generated when online checking

is bypassed. The default is YES.

-validate=CUSTOMIZE|RUN

Indicates whether customization terminates when online checking detects

errors in the application. CUSTOMIZE causes customization to terminate when

online checking detects errors. RUN causes customization to continue when

online checking detects errors. RUN should be used if tables that are used by

the application do not exist at customization time. The default is CUSTOMIZE.

-staticPositioned=NO|YES

Indicates whether the DB2 processes positioned UPDATE or DELETE

statements as static SQL statements.

 NO, which is the default, DB2 processes positioned UPDATE or DELETE

statements dynamically.

 YES indicates that DB2 processes positioned UPDATE or DELETE statements as

static SQL statements. Specifying YES can improve the performance of

programs that contain positioned UPDATE or DELETE statements. However, if

you pass iterators as variables between methods, you might need to modify

applications that use those iterators. See “db2profc usage notes” on page 244

for details.

-pgmversion=version-ID|AUTO

Specifies a version identifier that the SQLJ customizer puts in the DBRMs and

in the customized profile. The DB2 bind process puts this version identifier in

the DB2 package. This parameter has the same function as the DB2

precompiler VERSION option. See Part 5 of DB2 Application Programming and

SQL Guide for more information about the VERSION option.

 The version identifier must be an alphanumeric string of 64 bytes or less.

 If you specify AUTO, the SQLJ customizer generates a version identifier that is

a string representation of the current time.

 If you do not specify the pgmversion parameter, the version identifier value is

an empty string.

-pgmname=DBRM-name

Specifies the common part of the names for the four DBRMs that the SQLJ

customizer generates. DBRM-name must be seven or fewer characters in length

and must conform to the rules for naming members of MVS partitioned data

Chapter 6. Preparing and running JDBC and SQLJ programs 243

|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|

|

|
|

|
|

sets. See “Binding packages and plans after running db2profc” for information

on how to bind each of the DBRMs.

serialized-profile-name

Specifies the name of the serialized profile that is to be customized. A

serialized profile name is of the following form:

program-name_SJProfileIDNumber.ser

db2profc output

When db2profc runs, it creates four DBRMs and customized serialized profiles. The

customized serialized profiles overwrite the serialized profiles.

db2profc usage notes

Online checking is always recommended: It is highly recommended that you use

online checking when you customize your serialized profiles. Online checking

determines information about the data types and lengths of DB2 host variables,

and is especially important for the following items:

v Predicates with java.lang.String host variables and CHAR columns

Unlike character variables in other host languages, Java String host variables are

not declared with a length attribute. To optimize a query properly that contains

character host variables, DB2 needs the length of the host variables. For

example, suppose that a query has a predicate in which a String host variable is

compared to a CHAR column, and an index is defined on the CHAR column. If

DB2 cannot determine the length of the host variable, it might do a table space

scan instead of an index scan. Online checking avoids this problem by providing

the lengths of the corresponding character columns.

v Predicates with java.lang.String host variables and GRAPHIC columns

Without online checking, DB2 might issue a bind error (SQLCODE -134) when it

encounters a predicate in which a String host variable is compared to a

GRAPHIC column.

v CHAR columns in the result table of an SQLJ SELECT statement at a remote

server (db2profc only):

The JDBC driver cannot describe a SELECT statement that is run at a remote

server. Therefore, without online checking, the driver cannot determine the exact

data types and lengths of the result table columns. For character columns, the

driver assigns a data type and length of VARCHAR(512). Therefore, if you do

not perform online checking, and you select data from a CHAR column, the

result is a character string of length 512, which is not the desired result.

v Column names in the result table of an SQLJ SELECT statement at a remote

server (db2sqljcustomize only):

Without online checking, the driver cannot determine the column names for the

result table of a remote SELECT.

Online checking restriction: If a query produces an intermediate result table, the

customizer cannot do online checking of that query and issues a warning message.

Binding packages and plans after running db2profc

Binding an SQLJ plan after running db2profc involves these steps:

1. Bind the DBRMs that are produced by the SQLJ customizer.

You can bind the DBRMs directly into a plan or bind the DBRMs into packages

and then bind the packages into a plan.The SQLJ customizer produces four

DBRMs, one for each DB2 isolation level with which the application can run.

Table 51 on page 245 shows the name of each DBRM and the isolation level

244 Application Programming Guide and Reference for Java™

|
|

|
|

that you need to specify when you bind that DBRM.

 Table 51. SQLJ DBRMs and their isolation levels

DBRM name Bind with isolation level

DBRM-name1 Uncommitted read (UR)

DBRM-name2 Cursor stability (CS)

DBRM-name3 Read stability (RS)

DBRM-name4 Repeatable read (RR)

2. Bind the JDBC packages into your SQLJ plan. The default names of the JDBC

packages are:

v DSNJDBC.DSNJDBC1

v DSNJDBC.DSNJDBC2

v DSNJDBC.DSNJDBC3

v DSNJDBC.DSNJDBC4
3. Ensure that the JDBC profile is in a directory that is specified in the

CLASSPATH environment variable, or the path that contains the JDBC profile

must be specified in the SQLJ/JDBC run-time properties file, with the

db2.jdbc.profile.pathname property. “Customizing the JDBC profile (optional)”

on page 286 explains how to create the JDBC profile.

For programs that include both statically executed and dynamically executed

statements, such as programs that include JDBC methods as well as SQLJ

statements, it is recommended that you bind your SQLJ plans with the

DYNAMICRULES(BIND) option. This option causes DB2 to use uniform

authorization and object qualification rules for dynamic and static SQL statements.

For more information on binding packages and plans, see Chapter 2 of DB2

Command Reference.

Preparing Java routines for execution

Java routines are user-defined functions or stored procedures that are written in

Java. Java stored procedures or user-defined functions are referred to in this topic

as interpreted Java routines. This topic explains how to prepare Java routines for

execution.

See “Preparing JDBC programs for execution” on page 219, “Preparing SQLJ

programs for execution under the DB2 Universal JDBC Driver” on page 219, or

“Preparing SQLJ programs for execution under the JDBC/SQLJ Driver for OS/390

and z/OS” on page 239 for detailed information on program preparation steps that

are common to all JDBC or SQLJ programs. See “Defining a Java routine to DB2”

on page 206 for information on defining Java routines and JAR files to DB2.

This topic outlines the program preparation steps for interpreted Java routines.

Those steps vary, depending on whether your routine contains embedded SQL

statements.

Preparing interpreted Java routines with no SQLJ statements

If the program contains only JDBC methods or no SQL statements, use one of the

following procedures for program preparation.

Procedure 1: Use this procedure if you run your Java routine from a JAR file. This

procedure is recommended over procedure 2.

Chapter 6. Preparing and running JDBC and SQLJ programs 245

|
|
|
|
|
|

1. Run the javac command to compile the Java program to produce Java

bytecodes.

2. Run the jar command to collect the class files that contain the methods for

your routine into a JAR file. See “Creating JAR files for Java routines” on page

247 for information on creating the JAR file.

3. Call the INSTALL_JAR stored procedure to define the JAR file to DB2.

4. If another user defines the routine to DB2, execute the SQL GRANT USAGE

ON JAR statement to grant the privilege to use the JAR file to that user.

5. Execute the SQL CREATE PROCEDURE or CREATE FUNCTION statement to

define the routine to DB2. Specify the EXTERNAL NAME parameter with the

name of the JAR that you defined to DB2 in step 3.

6. Execute the SQL GRANT statement to grant the EXECUTE privilege on the

routine to the appropriate users.

Procedure 2: Use this procedure if you do not run your Java routine from a JAR file.

1. Run the javac command to compile the Java program to produce Java

bytecodes.

2. Ensure that the HFS directory that contains the class files for your routine is in

the CLASSPATH for the WLM-established stored procedure address space.

You specify this CLASSPATH in the JAVAENV data set. You specify the

JAVAENV data set using a JAVAENV DD statement in the startup procedure

for the WLM-established stored procedure address space.

If you need to modify the CLASSPATH environment variable in the JAVAENV

data set to include the directory for the Java routine's classes, you must restart

the WLM address space to make it use the modified CLASSPATH.

3. Execute the SQL CREATE PROCEDURE or CREATE FUNCTION statement to

define the routine to DB2. Specify the EXTERNAL NAME parameter without a

JAR name.

4. Execute the SQL GRANT statement to grant the EXECUTE privilege on the

routine to the appropriate users.

Procedure 3:

Use DB2 Development Center to perform all of the program preparation steps.

Preparing interpreted Java routines with SQLJ statements

If the program contains embedded SQL statements, use one of the following

procedures for program preparation.

Procedure 1: Use this procedure if you run your Java routine from a JAR file. This

procedure is recommended over procedure 2.

1. Run the sqlj command to translate the source code to produce generated Java

source code and serialized profiles, and to compile the Java program to

produce Java bytecodes.

2. If you are using the JDBC/SQLJ Driver for OS/390 and z/OS, run the db2profc

command to produce serialized profiles that are customized for DB2 UDB for

z/OS and DBRMs.

If you are using the DB2 Universal JDBC Driver, run the db2sqljcustomize

command to produce serialized profiles that are customized for DB2 UDB for

z/OS and DB2 packages.

246 Application Programming Guide and Reference for Java™

|
|
|

|
|
|

3. Run the jar command to package the class files that contain the methods for

your routine, and the profiles that you generated in step 2 on page 246 into a

JAR file. See “Creating JAR files for Java routines” for information on creating

the JAR file.

4. Call the INSTALL_JAR stored procedure to define the JAR file to DB2.

5. If another user defines the routine to DB2, execute the SQL GRANT USAGE

ON JAR statement to grant the privilege to use the JAR file to that user.

6. Execute the SQL CREATE PROCEDURE or CREATE FUNCTION statement to

define the routine to DB2. Specify the EXTERNAL NAME parameter with the

name of the JAR that you defined to DB2 in step 4.

7. If you are using the JDBC/SQLJ Driver for OS/390 and z/OS, run the DB2

BIND command to bind the DBRMs that you created in step 2 on page 246 into

packages.

Procedure 2: Use this procedure if you do not run your Java routine from a JAR file.

1. Run the sqlj command to translate the source code to produce generated Java

source code and serialized profiles, and to compile the Java program to

produce Java bytecodes.

2. If you are using the JDBC/SQLJ Driver for OS/390 and z/OS, run the db2profc

command to produce serialized profiles that are customized for DB2 UDB for

z/OS and DBRMs.

If you are using the DB2 Universal JDBC Driver, run the db2sqljcustomize

command to produce serialized profiles that are customized for DB2 UDB for

z/OS and DB2 packages.

3. Ensure that the HFS directory that contains the class files for your routine is in

the CLASSPATH for the WLM-established stored procedure address space.

You specify this CLASSPATH in the JAVAENV data set. You specify the

JAVAENV data set using a JAVAENV DD statement in the startup procedure

for the WLM-established stored procedure address space.

If you need to modify the CLASSPATH environment variable in the JAVAENV

data set to include the directory for the Java routine's classes, you must restart

the WLM address space to make it use the modified CLASSPATH.

4. Use the SQL CREATE PROCEDURE or CREATE FUNCTION statement to

define the routine to DB2. Specify the EXTERNAL NAME parameter without a

JAR name.

5. If you are using the JDBC/SQLJ Driver for OS/390 and z/OS, run the DB2

BIND command to bind the DBRMs that you created in step 2 into packages.

Procedure 3:

Use DB2 Development Center to perform all of the program preparation steps.

Creating JAR files for Java routines

A convenient way to ensure that all modules of a Java routine are accessible is to

store those modules in a JAR file. You create the JAR file by running the jar

command in z/OS UNIX System Services. To create the JAR file, follow these

steps:

1. If the Java source file does not contain a package statement, change to the

directory that contains the class file for the Java routine, which you created by

running the javac command.

For example, if JDBC routine Add_customer.java is in /u/db2res3/acmejos,

change to directory /u/db2res3/acmejos.

Chapter 6. Preparing and running JDBC and SQLJ programs 247

|
|
|

|
|
|

|
|
|

|

|
|
|
|

|
|
|

|
|

If the Java source file contains a package statement, change to the directory that

is one level above the directory that is named in the package statement.

For example, suppose the package statement is:

package lvlOne.lvlTwo.lvlThree;

Change to the directory that contains lvlOne as an immediate subdirectory.

2. Run the jar command. You might need to specify at least these options:

c Creates a new or empty archive.

v Generates verbose output on stderr.

f Specifies that the argument immediately after the options list is the name of

the JAR file to be created.
For example, to create a JAR file named acmejos.jar from Add_customer.class,

which is in package acmejos, execute this jar command:

jar -cvf acmejos.jar acmejos/Add_customer.class

To create a JAR file for an SQLJ routine, you also need to include all generated

class files, such as classes that are generated for iterators, and all serialized

profile files. For example, suppose that all classes are declared to be in package

acmejos, and all class files, including generated class files, and all serialized

profile files for SQLJ routine Add_customer.sqlj are in directory

/u/db2res3/acmejos/. To create a JAR file named acmejos.jar, change the the

/u/db2res3 directory, and then issue this jar command:

jar -cvf acmejos.jar acmejos/*.class acmejos/*.ser

Example of preparing a Java routine for execution

The following example demonstrates how to prepare the SQLJ stored procedure

that is shown in Figure 64 on page 217 for execution using the DB2 Universal

JDBC Driver. This example uses Procedure 1 in “Preparing interpreted Java

routines with SQLJ statements” on page 246.

1. On z/OS UNIX System Services, run the sqlj command to translate and

compile the SQLJ source code.

Assume that the path for the stored procedure source program is

/u/db2res3/s1/s1sal.sqlj. Change to directory /u/db2res3/s1, and issue this

command:

sqlj s1sal.sqlj

After this process completes, the /u/db2res3/s1 directory contains these files:

s1sal.java

s1sal.class

s1sal_SJProfile0.ser

2. On z/OS UNIX System Services, run the db2sqljcustomize command to

produce serialized profiles that are customized for DB2 UDB for z/OS and to

bind the DB2 packages for the stored procedure.

Change to the /u/db2res3 directory, and issue this command:

db2sqljcustomize -url jdbc:db2://mvs1:446/SJCEC1

 -user db2adm -password db2adm \

 -bindoptions "EXPLAIN YES" \

 -collection ADMCOLL \

 -rootpkgname S1SAL \

 s1sal_SJProfile0.ser

After this process completes, s1sal_SJProfile0.ser contains a customized

serialized profile. The DB2 subsystem contains these packages:

248 Application Programming Guide and Reference for Java™

|
|

|

|

|

|

||

||

||
|

|
|

|

|
|
|
|
|
|
|

|

|

|
|
|
|

|
|

|
|
|

|

|

|
|
|

|
|
|

|

|
|
|
|
|
|

|
|

S1SAL1

S1SAL2

S1SAL3

S1SAL4

3. On z/OS UNIX System Services, run the jar command to package the class

files that you created in step 1 on page 248 and the customized serialized

profile that you created in step 2 on page 248 into a JAR file.

Change to the /u/db2res3 directory, and issue this command:

jar -cvf s1sal.jar s1/*.class s1/*.ser

After this process completes, the /u/db2res3 directory contains this file:

s1sal.jar

4. Call the INSTALL_JAR stored procedure, which is on DB2 UDB for z/OS, to

define the JAR file to DB2.

You need to execute the CALL statement from a static SQL program or from an

ODBC or JDBC program. The CALL statement looks similar to this:

CALL SQLJ.INSTALL_JAR(’file:/u/db2res3/s1sal.jar’,’MYSCHEMA.S1SAL’,0);

The exact form of the CALL statement depends on the language of the program

that issues the CALL statement.

After this process completes, the DB2 catalog contains JAR file

MYSCHEMA.S1SAL.

5. If another user defines the routine to DB2, on DB2 UDB for z/OS, execute the

SQL GRANT USAGE ON JAR statement to grant the privilege to use the JAR

file to that user.

Suppose that you want any user to be able to define the stored procedure to

DB2. This means that all users need the USAGE privilege on JAR

MYSCHEMA.S1SAL. To grant this privilege, execute this SQL statement:

GRANT USAGE ON JAR MYSCHEMA.S1SAL TO PUBLIC;

6. On DB2 UDB for z/OS, execute the SQL CREATE PROCEDURE statement to

define the stored procedure to DB2:

CREATE PROCEDURE SYSPROC.S1SAL

 (DECIMAL(10,2) INOUT)

 FENCED

 MODIFIES SQL DATA

 COLLID ADMCOLL

 LANGUAGE JAVA

 EXTERNAL NAME 'MYSCHEMA.S1SAL:s1.S1Sal.getSals'

 WLM ENVIRONMENT WLMIJAV

 DYNAMIC RESULT SETS 1

 PROGRAM TYPE SUB

 PARAMETER STYLE JAVA;

Running JDBC and SQLJ programs

After you have set the environment variables discussed in “Setting environment

variables for the JDBC/SQLJ Driver for OS/390 and z/OS” on page 280 and

prepared your program for execution, your program is ready to run.

To ensure that the program can find all the files that it needs:

v For an SQLJ program, put the serialized profiles for the program in the same

directory as the class files for the program.

v Include class files that are used by the program in the CLASSPATH.

To run your JDBC or SQLJ program, execute the java command from the z/OS

UNIX System Services command line:

Chapter 6. Preparing and running JDBC and SQLJ programs 249

|
|
|
|

|
|
|

|

|

|

|

|
|

|
|

|

|
|

|
|

|
|
|

|
|
|

|

|
|

|
|
|
|
|
|
|
|
|
|
|

java program-name

250 Application Programming Guide and Reference for Java™

Chapter 7. Installing the DB2 Universal JDBC Driver

The procedures in this topic describe what you need to do to install the DB2

Universal JDBC Driver. The procedures are:

v “Installing the DB2 Universal JDBC Driver as part of a DB2 installation”

Follow this procedure to provide DB2 Universal JDBC Driver type 2 connectivity

and DB2 Universal JDBC Driver type 4 connectivity on a z/OS system that has a

DB2 UDB for z/OS subsystem.

v “Installing the z/OS Application Connectivity to DB2 for z/OS feature” on page

274

Follow this procedure to provide DB2 Universal JDBC Driver type 4 connectivity

on a z/OS system that does not have a DB2 UDB for z/OS subsystem.

Installing the DB2 Universal JDBC Driver as part of a DB2 installation

To install the DB2 Universal JDBC Driver as part of a DB2 UDB for z/OS

installation, follow these steps:

 1. Install Java 2 Technology Edition, SDK 1.3.1 or higher. If you plan to

implement Java stored procedures and user-defined functions on this DB2

subsystem, install Java 2 Technology Edition, SDK 1.3.1, SDK 1.4.1, or higher.

 2. If you plan to use DB2 Universal JDBC Driver type 4 connectivity to connect

to DB2 UDB for z/OS Version 7 servers, install OS/390 Support for Unicode

or z/OS Support for Unicode on those servers. See Information APARs II13048

and II13049 for more information.

 3. On z/OS, enable TCP/IP. See IBM TCP/IP for MVS: Customization &

Administration Guide.

 4. When you allocate and load the DB2 UDB for z/OS libraries, include the steps

that allocate and load the DB2 Universal JDBC Driver libraries. See “Loading

the DB2 Universal JDBC Driver libraries” on page 252 for details.

 5. On DB2 UDB for z/OS, enable distributed data facility (DDF) and TCP/IP

support. See Part 3 of DB2 Installation Guide.

 6. On DB2 UDB for z/OS, set subsystem parameter DESCSTAT to YES.

DESCSTAT corresponds to installation field DESCRIBE FOR STATIC on panel

DSNTIPF. See Part 2 of DB2 Installation Guide for information on setting

DESCSTAT. This step is necessary for SQLJ support.

 7. In z/OS UNIX System Services, edit your .profile file to customize the

environment variable settings. You use this step to set the libraries, paths, and

files that the DB2 Universal JDBC Driver uses. See “Setting environment

variables for the DB2 Universal JDBC Driver” on page 252 for details.

 8. Optional: Customize the DB2 Universal JDBC Driver configuration properties.

See “DB2 Universal JDBC Driver configuration properties customization” on

page 253 for details.

 9. On DB2 UDB for z/OS, enable the DB2-supplied stored procedures and define

the tables that are used by the DB2 Universal JDBC Driver. See “Enabling the

DB2-supplied stored procedures and defining the tables used by the DB2

Universal JDBC Driver” on page 261.

10. In z/OS UNIX System Services, run the DB2binder utility to bind the

packages for the DB2 Universal JDBC Driver. See “Binding the packages for

the DB2 Universal JDBC Driver” on page 264.

© Copyright IBM Corp. 1998, 2006 251

|

|
|

|
|
|

#
#
#
#

|
|

|
|
|

|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|

11. If you plan to use Universal Driver type 4 connectivity to implement

distributed transactions against DB2 UDB for OS/390 and z/OS Version 7

servers: In z/OS UNIX System Services, run the DB2T4XAIndoubtUtil utility

on the z/OS system on which you are installing z/OS Application

Connectivity to DB2 for z/OS. Run the utility once for each of the DB2 UDB

for OS/390 and z/OS Version 7 servers. See “DB2T4XAIndoubtUtil for

distributed transactions with DB2 UDB for OS/390 and z/OS Version 7

servers” on page 267 for details.

12. If you plan to use LOB locators to access DBCLOB columns in DB2 tables on

DB2 UDB for z/OS servers: In z/OS UNIX System Services, run the

DB2LobTableCreator utility on each of those servers to create tables that are

needed for fetching LOB locators. See “Enabling retrieval of DBCLOB columns

with LOB locators on DB2 UDB for OS/390 and z/OS servers” on page 271.

13. Verify the installation by running a simple JDBC application. See “Verifying

the installation of the DB2 Universal JDBC Driver” on page 272 for

suggestions on how to do that.

Loading the DB2 Universal JDBC Driver libraries

When you install DB2 UDB for z/OS, include the steps for allocating the HFS

directory structure and using SMP/E to load the DB2 Universal JDBC Driver

libraries. The jobs that perform these functions are:

DSNISMKD

Invokes the DSNMKDIR EXEC to allocate the HFS directory structure.

DSNDDEF2

Includes steps to define DDDEFs for the DB2 Universal JDBC Driver

libraries.

DSNRECV3

Includes steps that perform the SMP/E RECEIVE function for the DB2

Universal JDBC Driver libraries.

DSNAPPL2

Includes the steps that perform the SMP/E APPLY CHECK and APPLY

functions for the DB2 Universal JDBC Driver libraries.

DSNACEP2

Includes the steps that perform the SMP/E ACCEPT CHECK and ACCEPT

functions for the DB2 Universal JDBC Driver libraries.

See IBM DATABASE 2 Universal Database for z/OS Program Directory for information

on allocating and loading DB2 data sets.

Setting environment variables for the DB2 Universal JDBC

Driver

The environment variables that you must set are:

PATH

Modify PATH to include the directory that contains the shell scripts that

invoke DB2 Universal JDBC Driver program preparation and debugging

functions. If the DB2 Universal JDBC Driver is installed in

/usr/lpp/db2810/jcc, modify PATH as follows:

export PATH=/usr/lpp/db2810/jcc/bin:$PATH

LIBPATH

The DB2 Universal JDBC Driver contains the following dynamic load libraries

(DLLs):

252 Application Programming Guide and Reference for Java™

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|

|
|
|

|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|

|

|

|

|
|
|
|
|
|

|
|
|

v libdb2jcct2.so

v libdb2jcct2zos.so

Those DLLs contain the native (C or C++) implementation of the DB2

Universal JDBC Driver. The driver uses this code when you use Universal

Driver type 2 connectivity.

Modify LIBPATH to include the directory that contains these DLLs. If the DB2

Universal JDBC Driver is installed in /usr/lpp/db2810/jcc, modify LIBPATH

as follows:

export LIBPATH=/usr/lpp/db2810/jcc/lib:$LIBPATH

CLASSPATH

The DB2 Universal JDBC Driver contains the following class files:

db2jcc.jar

Contains all JDBC classes and the SQLJ runtime classes for the DB2

Universal JDBC Driver.

db2jcc_javax.jar

Contains a subset of the J2EE classes that are needed by the DB2 Universal

JDBC Driver.

sqlj.zip

Contains the classes that are needed to prepare SQLJ applications for

execution under the DB2 Universal JDBC Driver.

db2jcc_license_cisuz.jar

A license file that permits access to the DB2 UDB server.

Modify your CLASSPATH to include these files. If the DB2 Universal JDBC

Driver is installed in /usr/lpp/db2810/jcc, modify CLASSPATH as follows:

export CLASSPATH=/usr/lpp/db2810/jcc/classes/db2jcc.jar: \

/usr/lpp/db2810/jcc/classes/db2jcc_javax.jar: \

/usr/lpp/db2810/jcc/classes/sqlj.zip: \

/usr/lpp/db2810/jcc/classes/db2jcc_license_cisuz.jar: \

$CLASSPATH

Important: Do not include class files for both the DB2 Universal JDBC Driver

and the JDBC/SQLJ Driver for OS/390 and z/OS in your CLASSPATH. The

only exception to this rule is that you need to include classes for both drivers

in your CLASSPATH while you convert serialized profiles that you customized

under the JDBC/SQLJ Driver for OS/390 and z/OS to the format for the DB2

Universal JDBC Driver. See “Converting JDBC/SQLJ Driver for OS/390 and

z/OS serialized profiles for the DB2 Universal JDBC Driver” on page 269.

If you use Java stored procedures, you need to set additional environment

variables in a JAVAENV data set. See “Setting the run-time environment for

interpreted Java stored procedures” on page 202 for more information.

DB2 Universal JDBC Driver configuration properties

customization

The DB2 Universal JDBC Driver configuration properties let you set property

values that have driver-wide scope. Those settings apply across applications and

DataSource instances. You can change the settings without having to change

application source code or DataSource characteristics.

Each DB2 Universal JDBC Driver configuration property setting is of this form:

property=value

Chapter 7. Installing the DB2 Universal JDBC Driver 253

|
|

|
|
|

|
|
|
|

|
|

|
|
|

|
|
|

|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|

|

|
|
|
|

|

|

property can have one or more of the following forms:

v db2.jcc.override.property-name

v db2.jcc.property-name

v db2.jcc.default.property-name

If the configuration property begins with db2.jcc.override, the configuration

property is applicable to all connections and overrides any Connection or

DataSource property with the same property-name. If the configuration property

begins with db2.jcc or db2.jcc.default, the configuration property value is a default.

Connection or DataSource property settings override that value.

You can set configuration properties in the following ways:

v Set the configuration properties as Java system properties. Those settings

override any other settings.

For stand-alone Java applications, you can set the configuration properties as

Java system properties by specifying -Dproperty=value for each configuration

property when you execute the java command.

For Java stored procedures or user-defined functions, you can set the

configuration properties by specifying -Dproperty=value for each configuration

property in a file whose name you specify in the JVMPROPS option. You specify

the JVMPROPS options in the ENVAR option of the Language Environment

options string. The Language Environment options string is in a data set that is

specified by the JAVAENV DD statement in the WLM address space startup

procedure. See “Setting up the WLM application environment for interpreted

Java routines” on page 200 for more information.

v Set the configuration properties in a resource whose name you specify in the

db2.jcc.propertiesFile Java system property. For example, you can specify an

absolute path name for the db2.jcc.propertiesFile value.

For stand-alone Java applications, you can set the configuration properties by

specifying the -Ddb2.jcc.propertiesFile=path option when you execute the java

command.

For Java stored procedures or user-defined functions, you can set the

configuration properties by specifying the -Ddb2.jcc.propertiesFile=path option in

a file whose name you specify in the JVMPROPS option. You specify the

JVMPROPS options in the ENVAR option of the Language Environment options

string. The Language Environment options string is in a data set that is specified

by the JAVAENV DD statement in the WLM address space startup procedure.

See “Setting up the WLM application environment for interpreted Java routines”

on page 200 for more information.

v Set the configuration properties in a resource named

DB2JccConfiguration.properties. A standard Java resource search is used to find

DB2JccConfiguration.properties. The DB2 Universal JDBC Driver searches for

this resource only if you have not set the db2.jcc.propertiesFile Java system

property.

DB2JccConfiguration.properties can be a stand-alone file, or it can be included in

a JAR file. If DB2JccConfiguration.properties is a stand-alone file, the contents

are automatically converted to Unicode. If you include

DB2JccConfiguration.properties in a JAR file, you need to convert the contents to

Unicode before you put them in the JAR file.

If DB2JccConfiguration.properties is a stand-alone file, the path for

DB2JccConfiguration.properties must be in the following places:

– For stand-alone Java applications: Include the directory that contains

DB2JccConfiguration.properties in the CLASSPATH concatenation.

254 Application Programming Guide and Reference for Java™

|
|
|
|

|
|
|
|
|

|

|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|

|
|

– For Java stored procedures or user-defined functions: Include the directory that

contains DB2JccConfiguration.properties in the CLASSPATH concatenation in

the ENVAR option of the Language Environment options string. The

Language Environment options string is in a data set that is specified by the

JAVAENV DD statement in the WLM address space startup procedure. See

“Setting up the WLM application environment for interpreted Java routines”

on page 200 for more information.

If DB2JccConfiguration.properties is in a JAR file, the JAR file must be in the

CLASSPATH concatenation.

Recommendation: Because support for

com/ibm/db2/jcc/DB2JccConfiguration.properties as the default resource name

for configuration properties is deprecated, use DB2JccConfiguration.properties

instead.

Example: Putting DB2JccConfiguration.properties in a JAR file: Suppose that your

configuration properties are in a file that is in EBCDIC code page 1047. To put the

properties file into a JAR file, follow these steps:

1. Rename DB2JccConfiguration.properties to another name, such as

EBCDICVersion.properties.

2. Run the iconv shell utility on the z/OS UNIX System Services command line to

convert the file contents to Unicode. For example, to convert

EBCDICVersion.properties to a Unicode file named

DB2JccConfiguration.properties, issue this command:

iconv -f ibm-1047 -t utf-8 EBCDICVersion.properties \

 > DB2JccConfiguration.properties

3. Execute the jar command to add the Unicode file to the JAR file. In the JAR

file, the configuration properties file must be named

DB2JccConfiguration.properties. For example:

jar -cvf jdbcProperties.jar DB2JccConfiguration.properties

You can set any of the following DB2 Universal JDBC Driver configuration

properties. All properties are optional.

db2.jcc.accountingInterval

Specifies whether DB2 accounting records are produced at commit points or on

termination of the physical connection to the data source. If the value of

db2.jcc.accountingInterval is COMMIT, DB2 accounting records are produced at

commit points. For example:

db2.jcc.accountingInterval=COMMIT

Otherwise, accounting records are produced on termination of the physical

connection to the data source.

 db2.jcc.accountingInterval applies only to Universal Driver type 2 connectivity

on DB2 UDB for z/OS. db2.jcc.accountingInterval is not applicable to

connections under CICS or IMS, or for Java stored procedures.

 You can override db2.jcc.accountingInterval by setting the accountingInterval

property for a Connection or DataSource object.

db2.jcc.disableSQLJProfileCaching

 Specifies whether serialized profiles are cached when the JVM under which

their application is running is reset. db2.jcc.disableSQLJProfileCaching applies

only to applications that run in a resettable JVM (applications that run in the

Chapter 7. Installing the DB2 Universal JDBC Driver 255

|
|
|
|
|
|
|

|
|

|
|
|
|

|
|
|

|
|

|
|
|
|

|
|
|
|
|

|

|
|

#
#
#
#
#

#

#
#

#
#
#

#
#

#

#
#
#

CICS, IMS, or Java stored procedure environment), and use Universal Driver

type 2 connectivity on DB2 UDB for z/OS. Possible values are:

YES SQLJ serialized profiles are not cached every time the JVM is reset, so

that new versions of the serialized profiles are loaded when the JVM is

reset. Use this option when an application is under development, and

new versions of the application and its serialized profiles are produced

frequently.

NO SQLJ serialized profiles are cached when the JVM is reset. NO is the

default.

db2.jcc.dumpPool

Specifies the types of statistics on global transport pool events that are written,

in addition to summary statistics. The global transport pool is used for the

connection concentrator and Sysplex workload balancing.

 The data type of db2.jcc.dumpPool is int.

db2.jcc.dumpPoolStatisticsOnSchedule and

db2.jcc.dumpPoolStatisticsOnScheduleFile must also be set for writing statistics

before any statistics are written.

 You can specify one or more of the following types of statistics with the

db2.jcc.dumpPool property:

v DUMP_REMOVE_OBJECT (hexadecimal: X'01', decimal: 1)

v DUMP_GET_OBJECT (hexadecimal: X'02', decimal: 2)

v DUMP_WAIT_OBJECT (hexadecimal: X'04', decimal: 4)

v DUMP_SET_AVAILABLE_OBJECT (hexadecimal: X'08', decimal: 8)

v DUMP_CREATE_OBJECT (hexadecimal: X'10', decimal: 16)

v DUMP_SYSPLEX_MSG (hexadecimal: X'20', decimal: 32)

v DUMP_POOL_ERROR (hexadecimal: X'80', decimal: 128)

To trace more than one type of event, add the values for the types of events

that you want to trace. For example, suppose that you want to trace

DUMP_GET_OBJECT and DUMP_CREATE_OBJECT events. The numeric

equivalents of these values are 2 and 16, so you specify 18 for the

db2.jcc.dumpPool value.

 The default is 0, which means that only summary statistics for the global

transport pool are written.

db2.jcc.dumpPoolStatisticsOnSchedule

Specifies how often, in seconds, global transport pool statistics are written to

the file that is specified by db2.jcc.dumpPoolStatisticsOnScheduleFile. The

global transport object pool is used for the connection concentrator and

Sysplex workload balancing.

 The default is -1. -1 means that global transport pool statistics are not written.

db2.jcc.dumpPoolStatisticsOnScheduleFile

Specifies the name of the file to which global transport pool statistics are

written. The global transport pool is used for the connection concentrator and

Sysplex workload balancing.

 If db2.jcc.dumpPoolStatisticsOnScheduleFile is not specified, global transport

pool statistics are not written.

db2.jcc.lobOutputSize

Specifies the number of bytes of storage that the DB2 Universal JDBC Driver

needs to allocate for output LOB values when the driver cannot determine the

256 Application Programming Guide and Reference for Java™

#
#

##
#
#
#
#

##
#

#
#
#
#

#
#
#
#

#
#
#
#
#
#
#
#
#

#
#
#
#
#

#
#

#
#
#
#
#

#

#
#
#
#

#
#

#
#
#

size of those LOBs. This situation occurs for LOB stored procedure output

parameters. db2.jcc.lobOutputSize applies only to Universal Driver type 2

connectivity on DB2 UDB for z/OS.

 The default value for db2.jcc.lobOutputSize is 1048576. For systems with

storage limitations and smaller LOBs, set the db2.jcc.lobOutputSize value to a

lower number.

 For example, if you know that the output LOB size is at most 64000, set

db2.jcc.lobOutputSize to 64000.

db2.jcc.maxTransportObjectIdleTime

Specifies the amount of time in seconds that an unused transport object stays

in a global transport object pool before it can be deleted from the pool.

Transport objects are used for the connection concentrator and Sysplex

workload balancing.

 The default value for db2.jcc.maxTransportObjectIdleTime is 60. Setting

db2.jcc.maxTransportObjectIdleTime to a value less than 0 causes unused

transport objects to be deleted from the pool immediately. Doing this is not

recommended because it can cause severe performance degradation.

db2.jcc.maxTransportObjectWaitTime

Specifies the maximum amount of time in seconds that an application waits for

a transport object if the db2.jcc.maxTransportObjects value has been reached.

Transport objects are used for the connection concentrator and Sysplex

workload balancing. When an application waits for longer than the

db2.jcc.maxTransportObjectWaitTime value, the global transport object pool

throws an SQLException.

 The default value for db2.jcc.maxTransportObjectWaitTime is -1. Any negative

value means that applications wait forever.

db2.jcc.maxTransportObjects

Specifies the upper limit for the number of transport objects in a global

transport object pool for the connection concentrator and Sysplex workload

balancing. When the number of transport objects in the pool reaches the

db2.jcc.maxTransportObjects value, transport objects that have not been used

for longer than the db2.jcc.maxTransportObjectIdleTime value are deleted from

the pool.

 The default value for db2.jcc.maxTransportObjects is -1. Any value that is less

than or equal to 0 means that there is no limit to the number of transport

objects in the global transport object pool.

db2.jcc.minTransportObjects

Specifies the lower limit for the number of transport objects in a global

transport object pool for the connection concentrator and Sysplex workload

balancing. When a JVM is created, there are no transport objects in the pool.

Transport objects are added to the pool as they are needed. After the

db2.jcc.minTransportObjects value is reached, the number of transport objects

in the global transport object pool never goes below the

db2.jcc.minTransportObjects value for the lifetime of that JVM.

 The default value for db2.jcc.minTransportObjects is 0. Any value that is less

than or equal to 0 means that the global transport object pool can become

empty.

db2.jcc.pkList

Specifies a package list that is used for the underlying RRSAF CREATE

THREAD call when a JDBC or SQLJ connection to a data source is established.

Chapter 7. Installing the DB2 Universal JDBC Driver 257

#
#
#

#
#
#

#
#

#
#
#
#
#

#
#
#
#

#
#
#
#
#
#
#

#
#

#
#
#
#
#
#
#

#
#
#

#
#
#
#
#
#
#
#

#
#
#

|
|
|

Specify this property if you do not bind plans for your SQLJ programs or for

the JDBC driver. If you specify this property, do not specify db2.jcc.planName.

 db2.jcc.pkList does not apply to applications that run under CICS or IMS, or to

Java stored procedures. The JDBC driver ignores the db2.jcc.pkList setting in

those cases.

 Recommendation: Use db2.jcc.pkList instead of db2.jcc.planName.

 The format of the package list is:

��

�

 ,

collection-ID.*

��

The default value of db2.jcc.pkList is NULLID.*.

 If you specify the -collection parameter when you run

com.ibm.db2.jcc.DB2Binder, the collection ID that you specify for DB2

Universal JDBC Driver packages when you run com.ibm.db2.jcc.DB2Binder

must also be in the package list for the db2.jcc.pkList property. See “Binding

the packages for the DB2 Universal JDBC Driver” on page 264 for information

about com.ibm.db2.jcc.DB2Binder.

 You can override db2.jcc.pkList by setting the pkList property for a Connection

or DataSource object.

 The following example specifies a package list for a DB2 Universal JDBC

Driver instance whose packages are in collection JDBCCID. SQLJ applications

that are prepared under this driver instance are bound into collections

SQLJCID1, SQLJCID2, or SQLJCID3.

db2.jcc.pkList=JDBCCID.*,SQLJCID1.*,SQLJCID2.*,SQLJCID3.*

db2.jcc.planName

Specifies a DB2 plan name that is used for the underlying RRSAF CREATE

THREAD call when a JDBC or SQLJ connection to a data source is established.

Specify this property if you bind plans for your SQLJ programs and for the

JDBC driver packages. If you specify this property, do not specify

db2.jcc.pkList.

 db2.jcc.planName does not apply to applications that run under CICS or IMS,

or to Java stored procedures. The JDBC driver ignores the db2.jcc.planName

setting in those cases.

 If you do not specify this property or the db2.jcc.pkList property, the DB2

Universal JDBC Driver uses the db2.jcc.pkList default value of NULLID.*.

 If you specify db2.jcc.planName, you need to bind the packages that you

produce when you run com.ibm.db2.jcc.DB2Binder into a plan whose name is

the value of this property. You also need to bind all SQLJ packages into a plan

whose name is the value of this property.

 You can override db2.jcc.planName by setting the planName property for a

Connection or DataSource object.

 The following example specifies a plan name of MYPLAN for the DB2

Universal JDBC Driver JDBC packages and SQLJ packages.

db2.jcc.planName=MYPLAN

258 Application Programming Guide and Reference for Java™

|
|

#
#
#

|

|
|

|||||||||||||||

|
|

|

|
|
|
|
|
|

|
|

|
|
|
|

|

|
|
|
|
|
|

#
#
#

|
|

|
|
|
|

|
|

|
|

|

db2.jcc.traceDirectory or db2.jcc.override.traceDirectory

Enables the DB2 Universal JDBC Driver trace for Java driver code, and

specifies a directory into which trace information is written. These properties

do not apply to Universal Driver type 2 connectivity on DB2 UDB for z/OS.

When db2.jcc.override.traceDirectory is specified, trace information for multiple

connections on the same DataSource is written to multiple files.

 When db2.jcc.override.traceDirectory is specified, a connection is traced to a

file named file-name_origin_n.

 n is the nth connection for a DataSource.

 If neither db2.jcc.traceFileName nor db2.jcc.override.traceFileName is specified,

file-name is traceFile. If db2.jcc.traceFileName or db2.jcc.override.traceFileName

is also specified, file-name is the value of db2.jcc.traceFileName or

db2.jcc.override.traceFileName.

 origin indicates the origin of the log writer that is in use. Possible values of

origin are:

cpds The log writer for a DB2ConnectionPoolDataSource object.

driver The log writer for a DB2Driver object.

global The log writer for a DB2TraceManager object.

sds The log writer for a DB2SimpleDataSource object.

xads The log writer for a DB2XADataSource object.

The db2.jcc.override.traceDirectory property overrides the traceDirectory

property for a Connection or DataSource object.

 For example, specifying the following setting for db2.jcc.override.traceDirectory

enables tracing of the DB2 Universal JDBC Driver Java code to files in a

directory named /SYSTEM/tmp:

db2.jcc.override.traceDirectory=/SYSTEM/tmp

You should set the trace properties under the direction of IBM Software

Support.

db2.jcc.sqljUncustomizedWarningOrException

Specifies the action that the DB2 Universal JDBC Driver takes when an

uncustomized SQLJ application runs.

db2.jcc.sqljUncustomizedWarningOrException can have the following values:

0 The DB2 Universal JDBC Driver does not throw a Warning or

Exception when an uncustomized SQLJ application is run. This is the

default.

1 The DB2 Universal JDBC Driver throws a Warning when an

uncustomized SQLJ application is run.

2 The DB2 Universal JDBC Driver throws an Exception when an

uncustomized SQLJ application is run.

db2.jcc.ssid

Specifies the name of the DB2 UDB subsystem that is used as the local

subsystem when an application uses Universal Driver type 2 connectivity on

DB2 UDB for z/OS. For example:

db2.jcc.ssid=DB2A

 Group attachment is not supported.

Chapter 7. Installing the DB2 Universal JDBC Driver 259

#
#
#
#
#
#

#
#

#

#
#
#
#

#
#

##

##

##

##

##

#
#

#
#
#

#

#
#

|
|
|
|

||
|
|

||
|

||
|

|
|
|
|

|

|

If you do not specify the db2.jcc.ssid property, the DB2 Universal JDBC Driver

uses the SSID value from the DSNHDECP data-only load module. When you

install DB2 UDB for z/OS, a DSNHDECP module is created in the

prefix.SDSNEXIT data set and the prefix.SDSNLOAD data set. Other

DSNHDECP load modules might be created in other data sets for selected

applications.

 The DB2 Universal JDBC Driver must load a DSNHDECP module before it can

read the SSID value. z/OS searches data sets in the following places, and in

the following order, for the DSNHDECP module:

1. Job pack area (JPA)

2. TASKLIB

3. STEPLIB or JOBLIB

4. LPA

5. Libraries in the link list

You need to ensure that if your system has more than one copy of the

DSNHDECP module, z/OS finds the data set that contains the correct copy for

the DB2 Universal JDBC Driver first.

db2.jcc.traceFile or db2.jcc.override.traceFile

Enables the DB2 Universal JDBC Driver trace for Java driver code, and

specifies the name on which the trace file names are based.The db2.jcc.traceFile

property does not apply to Universal Driver type 2 connectivity on DB2 UDB

for z/OS.

 Specify a fully qualified z/OS UNIX System Services file name for the

db2.jcc.override.traceFile property value.

 The db2.jcc.override.traceFile property overrides the traceFile property for a

Connection or DataSource object.

 For example, specifying the following setting for db2.jcc.override.traceFile

enables tracing of the DB2 Universal JDBC Driver Java code to a file named

/SYSTEM/tmp/jdbctrace:

db2.jcc.override.traceFile=/SYSTEM/tmp/jdbctrace

You should set the trace properties under the direction of IBM Software

Support.

db2.jcc.traceFileAppend or db2.jcc.override.traceFileAppend

Specifies whether to append to or overwrite the file that is specified by the

db2.jcc.override.traceFile property. These properties do not apply to Universal

Driver type 2 connectivity on DB2 UDB for z/OS. The data type of this

property is boolean. The default is false, which means that the file that is

specified by the traceFile property is overwritten.

 The db2.jcc.override.traceFileAppend property overrides the traceFileAppend

property for a Connection or DataSource object.

 For example, specifying the following setting for

db2.jcc.override.traceFileAppend causes trace data to be added to the existing

trace file:

db2.jcc.override.traceFileAppend=true

You should set the trace properties under the direction of IBM Software

Support.

db2.jcc.t2zosTraceFile

Enables the DB2 Universal JDBC Driver trace for C/C++ native driver code for

260 Application Programming Guide and Reference for Java™

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|

|
|

|
|
|

|

|
|

#
#
#
#
#
#

#
#

#
#
#

#

#
#

|
|

Universal Driver type 2 connectivity, and specifies the name on which the trace

file names are based. This property is required for collecting trace data for

C/C++ native driver code.

 Specify a fully qualified z/OS UNIX System Services file name for the

db2.jcct.t2zosTraceFile property value.

 For example, specifying the following setting for db2.jcct.t2zosTraceFile enables

tracing of the DB2 Universal JDBC Driver C/C++ native code to a file named

/SYSTEM/tmp/jdbctraceNative:

db2.jcc.t2zosTraceFile=/SYSTEM/tmp/jdbctraceNative

You should set the trace properties under the direction of IBM Software

Support.

db2.jcc.t2zosTraceBufferSize

Specifies the size of a trace buffer in virtual storage that is used for tracing the

processing that is done by the C/C++ native driver code. This value is also the

maximum amount of C/C++ native driver trace information that can be

collected.

 Specify a value in kilobytes. The default is 256 KB.

 This property is used only if the db2.jcc.t2zosTraceFile property is set.

 Recommendation: To avoid a performance impact, specify a value of 1024 or

less.

 For example, to set a trace buffer size of 1024 KB, use this setting:

db2.jcc.t2zosTraceBufferSize=1024

You should set the trace properties under the direction of IBM Software

Support.

db2.jcc.t2zosTraceWrap

Enables or disables wrapping of the SQLJ trace. db2.jcc.t2zosTraceWrap can

have one of the following values:

1 Wrap the trace

0 Do not wrap the trace

The default is 1. This parameter is optional. For example:

DB2SQLJ_TRACE_WRAP=0

You should set db2.jcc.t2zosTraceWrap only under the direction of IBM

Software Support.

Enabling the DB2-supplied stored procedures and defining the

tables used by the DB2 Universal JDBC Driver

Before you can use certain functions of the DB2 Universal JDBC Driver on a DB2

UDB for z/OS subsystem, you need to do these things:

v Install the following DB2-supplied stored procedures:

– SQLCOLPRIVILEGES

– SQLCOLUMNS

– SQLFOREIGNKEYS

– SQLGETTYPEINFO

– SQLPRIMARYKEYS

– SQLPROCEDURECOLS

– SQLPROCEDURES

Chapter 7. Installing the DB2 Universal JDBC Driver 261

|
|
|

|
|

|
|
|

|

|
|

|
|
|
|
|

|

|

|
|

|

|

|
|

|
|
|
||
||

|

|

|
|

|

|

|
|

|
|
|
|
|
|
|
|

– SQLSPECIALCOLUMNS

– SQLSTATISTICS

– SQLTABLEPRIVILEGES

– SQLTABLES

– SQLUDTS

– SQLCAMESSAGE
v Define the following tables:

– SYSIBM.SYSDUMMYU

– SYSIBM.SYSDUMMYA

– SYSIBM.SYSDUMMYE

Those tables ensure that character conversion does not occur when Unicode data

is stored in DBCLOB or CLOB columns.

To install the stored procedures and define the tables, you need to perform these

steps. It is assumed that you already have WLM installed.

1. Set up a WLM environment for running the stored procedures.

To set up a WLM application environment for these stored procedures, you

need to define a JCL startup procedure for the WLM environment, and define

the application environment to WLM. See “Creating the WLM address space

startup procedure for the DB2 Universal JDBC Driver stored procedures” and

“Defining the WLM application environment for the the DB2 Universal JDBC

Driver stored procedures.”

2. Define the stored procedures to DB2, bind the stored procedure packages, and

define the SYSIBM.SYSDUMMYU, SYSIBM.SYSDUMMYA, and

SYSIBM.SYSDUMMYE tables. See “Defining the DB2 Universal JDBC Driver

stored procedures to DB2 and creating the stored procedure packages” on page

264.

Creating the WLM address space startup procedure for the DB2

Universal JDBC Driver stored procedures

You can use the DSN8WLMP sample startup procedure as a model for your stored

procedure address space startup procedure. Make the following changes to that

procedure:

1. Change the APPLENV value to match the definition name that you specify in

the WLM Definition Menu. See “Defining the WLM application environment

for the the DB2 Universal JDBC Driver stored procedures.”

2. Change the startup procedure name to match the procedure name that you

specify in the WLM Create an Application Environment menu.

3. Change the DB2SSN value to the subsystem name of your DB2 UDB for z/OS

subsystem.

4. Edit the data set names to match your data set names.

Defining the WLM application environment for the the DB2

Universal JDBC Driver stored procedures

To define the application environment to WLM, specify values similar to those that

are shown on the following WLM panels.

262 Application Programming Guide and Reference for Java™

|
|
|
|
|
|

#
#
#
#

#
#

|
|

|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

|
|

|
|

|

|
|
|
|

File Utilities Notes Options Help

--

 Definition Menu WLM Appl

Command ===> ___

Definition data set . : none

Definition name WLMENV

Description Environment for Development Center

Select one of the

following options. . . 9 1. Policies

 2. Workloads

 3. Resource Groups

 4. Service Classes

 5. Classification Groups

 6. Classification Rules

 7. Report Classes

 8. Service Coefficients/Options

 9. Application Environments

 10. Scheduling Environments

Definition name

Specify the name of the WLM application environment that you are setting up

for stored procedures. This value needs to match the APPLENV value in the

WLM address space startup procedure.

Description

Specify any value.

Options

Specify 9 (Application Environments).

 Application-Environment Notes Options Help

--

 Create an Application Environment

Command ===> ___

Application Environment Name . : WLMENV

Description Environment for Development Center

Subsystem Type DB2

Procedure Name DSN8WLMP

Start Parameters DB2SSN=DB2T,NUMTCB=3,APPLENV=WLMENV

Limit on starting server address spaces for a subsystem instance:

1 1. No limit.

 2. Single address space per system.

 3. Single address spaces per sysplex.

Subsystem Type

Specify DB2.

Procedure Name

This name must match the name of the JCL startup procedure for the stored

procedure address spaces that are associated with this application

environment.

Start Parameters

If the DB2 subsystem in which the stored procedure runs is not in a Sysplex,

the DB2SSN value must match the name of that DB2 subsystem. If the same

JCL is used for multiple DB2 subsystems, specify DB2SSN=&IWMSSNM.

 The NUMTCB value depends on the type of stored procedure that you are

running. The maximum value should be between 5 and 8.

Chapter 7. Installing the DB2 Universal JDBC Driver 263

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

|
|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

|
|

|
|
|
|

|
|
|
|

|
|

The APPLENV value must match the value that you specify in the WLM

address space startup procedure and on the CREATE PROCEDURE statements

for the stored procedures. See “Defining the DB2 Universal JDBC Driver stored

procedures to DB2 and creating the stored procedure packages.”

Limit on starting server address spaces for a subsystem instance

Specify 1 (no limit).

Defining the DB2 Universal JDBC Driver stored procedures to

DB2 and creating the stored procedure packages

DB2 provides statements that you can use to define the DB2–supplied stored

procedures for JDBC, bind the stored procedure packages, and define the

SYSIBM.SYSDUMMYU, SYSIBM.SYSDUMMYA, and SYSIBM.SYSDUMMYE tables.

The statements are in these jobs:

DSNTIJSG

Use this job if you are defining the stored procedures and tables as part of

installing or migrating a DB2 subsystem.

 Before you run this job, you need to modify the WLM ENVIRONMENT

parameter value for each stored procedure to match the Application

Environment Name value that you specified in the WLM panels and the

APPLENV name that you specified in the WLM address space startup

procedure. Other customizations are made as part of the installation process.

DSNTIJMS

Use this job if you are defining the stored procedures and tables after you

install or migrate a DB2 subsystem.

 For DB2 Version 8, do not run this job until your DB2 subsystem is in

new-function mode.

 Before you run this job, you need to make the modifications that are described

in the job prolog.

DSNTIJMC

Use this job if you are migrating to DB2 Version 8, and you defined the stored

procedures and tables in a previous release of DB2. Do not run this job until

your DB2 subsystem is in new-function mode.

 Before you run this job, you need to make the modifications that are described

in the job prolog.

Binding the packages for the DB2 Universal JDBC Driver

To bind the packages for the DB2 Universal JDBC Driver, run the DB2binder

utility. This utility binds the packages and grants EXECUTE authority on the

packages to PUBLIC.

264 Application Programming Guide and Reference for Java™

|
|
|
|

|
|

|
|
#
#
#
#

#
#
#

#
#
#
#
#

#
#
#

#
#

#
#

#
#
#
#

#
#

|

|
|
|

DB2binder syntax

�� java com.ibm.db2.jcc.DB2Binder -url jdbc:db2: //server /database

:port
 �

� -user user-ID -password password

-size

integer

-collection

collection-name
 �

�

�

,

-tracelevel

trace-option

 -action add

-action

replace

 -keepdynamic no

-keepdynamic

yes

�

�
-reopt

once

-help
 ��

DB2Binder parameter descriptions

-url

Specifies the data source at which the DB2 Universal JDBC Driver packages are

to be bound. The variable parts of the -url value are:

jdbc:db2:

Indicates that the connection is to a server in the DB2 UDB family.

server

The domain name or IP address of the database server.

port

The TCP/IP server port number that is assigned to the database server.

This is an integer between 0 and 65535. The default is 446.

database

A name for the database server.

 If the connection is to a DB2 for z/OS server, database is the DB2 location

name that is defined during installation. All characters in this value must

be uppercase characters. You can determine the location name by executing

the following SQL statement on the server:

SELECT CURRENT SERVER FROM SYSIBM.SYSDUMMY1;

-user

Specifes the user ID under which the packages are to be bound. This user must

have BIND authority on the packages.

-password

Specifes the password for the user ID.

-size

Specifies the number of DB2 packages that DB2binder binds for each of the

four DB2 isolation levels and each of the two holdability values. The DB2

Universal JDBC Driver uses these packages to process dynamic SQL. In

Chapter 7. Installing the DB2 Universal JDBC Driver 265

|
|

||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||
|

|
||
|

|
|||||||||||||||||||||

|
|

|

|
|
|

|
|

|
|

|
|
|

|
|

|
|
|
|

|

|
|
|

|
|

|
|
|
|

addition, the DB2binder binds a single package that the DB2 Universal JDBC

Driver uses for static SQL. Therefore, the total number of packages that

DB2binder binds is:

4*2*integer+1

The default value for integer is 3.

-collection

Specifies the collection ID for the packages that are used by an instance of the

DB2 Universal JDBC Driver. The default is NULLID. DB2binder translates this

value to uppercase.

 You can create multiple instances of the DB2 Universal JDBC Driver package

set at a single location by running com.ibm.db2.jcc.DB2Binder multiple times,

and specifying a different value for -collection each time. At run time, you

select a copy of the DB2 Universal JDBC Driver by setting the

currentPackageSet property to a value that matches a -collection value. See

“Properties for the DB2 Universal JDBC Driver” on page 185 for information

on the currentPackageSet property.

-tracelevel

Specifies what to trace while DB2Binder runs. See the explanation of the

traceLevel property in “Properties for the DB2 Universal JDBC Driver” on

page 185 for the options that are available.

-action

Specifies whether the DB2 Universal JDBC Driver packages can be replaced.

add Indicates that a package can be created only if it does not already exist.

Add is the default.

replace

Indicates that a package can be created even if a package with the

same name already exists. The new package replaces the old package.

-keepdynamic

Specifies whether DB2 keeps already prepared dynamic SQL statements in the

dynamic statement cache after commit points.

yes Indicates that DB2 keeps already prepared dynamic SQL statements in

the dynamic statement cache after commit points.

no Indicates that DB2 does not keep already prepared dynamic SQL

statements in the dynamic statement cache after commit points. This is

the default.

If -keepdynamic is yes, dynamic statement caching can be done only if the

EDM dynamic statement cache is enabled on the database server. The

CACHEDYN subsystem parameter must be set to YES to enable the dynamic

statement cache.

 -keepdynamic is applicable only for DB2 UDB for z/OS database servers. See

DB2 Application Programming and SQL Guide for more information on dynamic

statement caching.

-reopt once

Specifies that DB2 determines and caches the access path for a dynamic

statement only once at run time, or until the prepared statement is invalidated

or removed from the dynamic statement cache and needs to be prepared again.

266 Application Programming Guide and Reference for Java™

|
|
|

|

|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|

||
|

|
|
|

|
|
|

||
|

||
|
|

|
|
|
|

|
|
|

|
|
|
|

If -reopt once is not specified, the value is not set and is the default for the

database server. -reopt once is applicable only for DB2 UDB for z/OS database

servers.

-help

Specifies that the DB2binder utility describes each of the options that it

supports. If any other options are specified with -help, they are ignored.

DB2Binder example

Bind the JDBC packages for a DB2 Universal JDBC Driver instance on the DB2

subsystem that has that has IP address mvs1, port number 446, and DB2 location

name SJCEC1. Use the default collection name for the packages.

java com.ibm.db2.jcc.DB2Binder -url jdbc:db2://mvs1:446/SJCEC1 \

 -user SYSADM -password mypass

DB2T4XAIndoubtUtil for distributed transactions with DB2

UDB for OS/390 and z/OS Version 7 servers

If you plan to implement distributed transactions using Universal Driver type 4

connectivity that include DB2 UDB for OS/390 and z/OS Version 7 servers, you

need to run the DB2T4XAIndoubtUtil utility against those servers. This utility

allows Version 7 servers, which do not have built-in support for distributed

transactions that implement the XA specification, to emulate that support.

DB2T4XAIndoubtUtil performs one or both of the following tasks:

v Creates a table named SYSIBM.INDOUBT and an associated index

v Binds DB2 packages named T4XAIN01, T4XAIN02, T4XAIN03, and T4XAIN04

You should create and drop packages T4XAIN01, T4XAIN02, T4XAIN03, and

T4XAIN04 only by running DB2T4XAIndoubtUtil. You can create and drop

SYSTEM.INDOUBT and its index manually, but it is recommended that you use

the utility. See “DB2T4XAIndoubtUtil usage notes” on page 269 for instructions on

how to create those objects manually.

 DB2T4XAIndoubtUtil authorization:

 To run the DB2T4XAIndoubtUtil utility to create SYSTEM.INDOUBT and bind

packages T4XAIN01, T4XAIN02, T4XAIN03, and T4XAIN04, you need SYSADM

authority.

To run the DB2T4XAIndoubtUtil only to bind packages T4XAIN01, T4XAIN02,

T4XAIN03, and T4XAIN04, you need BIND authority on the packages.

 DB2T4XAIndoubtUtil syntax:

Chapter 7. Installing the DB2 Universal JDBC Driver 267

|
|
|

|
|
|

|
|
|
|

|
|

|

|

|
|
|
|
|

|

|

|

|
|
|
|
|

|

|
|
|

|
|

|
|

�� java com.ibm.db2.jcc.DB2T4XAIndoubtUtil -url jdbc:db2: //server /database

:port
 �

� -user user-ID -password password

-owner

owner-ID

-help

-delete
 �

�

-bindonly

-showSQL

 -jdbcCollection NULLID

-jdbcCollection

collection-ID

��

 DB2T4XAIndoubtUtil parameter descriptions:

-url

Specifies the data source at which DB2T4XAIndoubtUtil is to run. The variable

parts of the -url value are:

jdbc:db2:

Indicates that the connection is to a server in the DB2 UDB family.

server

The domain name or IP address of the database server.

port

The TCP/IP server port number that is assigned to the database server.

This is an integer between 0 and 65535. The default is 446.

database

A name for the database server.

 database is the DB2 location name that is defined during installation. All

characters in this value must be uppercase characters. You can determine

the location name by executing the following SQL statement on the server:

SELECT CURRENT SERVER FROM SYSIBM.SYSDUMMY1;

-user

Specifes the user ID under which DB2T4XAIndoubtUtil is to run. This user

must have SYSADM authority or must be a member of a RACF group that

corresponds to a secondary authorization ID with SYSADM authority.

-password

Specifes the password for the user ID.

-owner

Specifies a secondary authorization ID that has SYSADM authority. Use the

-owner parameter if the -user parameter value does not have SYSADM

authority. The -user parameter value must be a member of a RACF group

whose name is owner-ID.

 When the -owner parameter is specified, DB2T4XAIndoubtUtil uses owner-ID

as:

v The authorization ID for creating the SYSIBM.INDOUBT table.

v The authorization ID of the owner of the T4XAIN01, T4XAIN02, T4XAIN03,

and T4XAIN04 packages. SQL statements in those packages are executed

using the authority of owner-ID.

For information about the relationship between secondary authorization IDs

and RACF groups, see DB2 Administration Guide.

268 Application Programming Guide and Reference for Java™

||||||||||||||||||||
|

|
||||||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||||||||||

|
|
|

|
|
|

|
|

|
|

|
|
|

|
|

|
|
|

|

|
|
|
|

|
|

|
|
|
|
|

|
|

|

|
|
|

|
|

-help

Specifies that the DB2T4XAIndoubtUtil utility describes each of the options

that it supports. If any other options are specified with -help, they are ignored.

-delete

Specifies that the DB2T4XAIndoubtUtil utility deletes the objects that were

created when DB2T4XAIndoubtUtil was run previously.

-bindonly

Specifies that the DB2T4XAIndoubtUtil utility binds the T4XAIN01, T4XAIN02,

T4XAIN03, and T4XAIN04 packages and grants permission to PUBLIC to

execute the packages, but does not create the SYSIBM.INDOUBT table.

-showSQL

Specifies that the DB2T4XAIndoubtUtil utility displays the SQL statements that

it executes.

-jdbcCollection collection-name|NULLID

Specifies the value of the -collection parameter that was used when the DB2

Universal JDBC Driver packages were bound with the DB2Binder utility. The

-jdbcCollection parameter must be specified if the explicitly or implicitly

specified value of the -collection parameter was not NULLID.

 The default is -jdbcCollection NULLID.

 DB2T4XAIndoubtUtil usage notes:

 To create the SYSTEM.INDOUBT table and its index manually, use these SQL

statements:

CREATE TABLESPACE INDBTTS

 USING STOGROUP

 LOCKSIZE ROW

 BUFFERPOOL BP0

 SEGSIZE 32

 CCSID EBCDIC;

CREATE TABLE SYSIBM.INDOUBT(indbtXid VARCHAR(140) FOR BIT DATA NOT NULL,

 uowId VARCHAR(25) FOR BIT DATA NOT NULL,

 pSyncLog VARCHAR(150) FOR BIT DATA,

 cSyncLog VARCHAR(150) FOR BIT DATA)

 IN INDBTTS;

CREATE UNIQUE INDEX INDBTIDX ON SYSIBM.INDOUBT(indbtXid, uowId);

 DB2T4XAIndoubtUtil example:

 Run the DB2T4XAIndoubtUtil to allow a DB2 UDB for OS/390 and z/OS Version 7

subsystem that has IP address mvs1, port number 446, and DB2 location name

SJCEC1 to participate in XA distributed transactions.

java com.ibm.db2.jcc.DB2T4XAIndoubtUtil -url jdbc:db2://mvs1:446/SJCEC1 \

 -user SYSADM -password mypass

Converting JDBC/SQLJ Driver for OS/390 and z/OS serialized

profiles for the DB2 Universal JDBC Driver

To convert serialized profiles that you customized under JDBC/SQLJ Driver for

OS/390 and z/OS to a format that is compatible with the DB2 Universal JDBC

Driver, run the db2sqljupgrade utility. After you run the db2sqljupgrade utility,

you do not need to bind new packages for the associated SQLJ applications.

Chapter 7. Installing the DB2 Universal JDBC Driver 269

|
|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|
|

|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|
|

|

|

|
|
|
|

Before you can run the db2sqljupgrade utility, your CLASSPATH must contain the

full path names for the db2j2classes.zip file for the JDBC/SQLJ Driver for OS/390

and z/OS, and the db2jcc.jar and sqlj.zip files for the DB2 Universal JDBC Driver.

db2sqljupgrade syntax

�� db2sqljupgrade

-collection collection-name
 serialized-profile-name

serialized-profile-name.ser
 ��

db2sqljupgrade parameter descriptions

-collection

Specifies the collection ID for the DB2 packages that were bound for the

application that is associated with the JDBC/SQLJ Driver for OS/390 and

z/OS serialized profile. This collection ID is stored in the converted serialized

profile and is used as the qualifier for the DB2 packages for the application.

The packages were created using the DB2 BIND command from DBRMs that

were created when the db2profc command was run to create the serialized

profile. The default is NULLID.

serialized-profile-name or serialized-profile-name.ser

Specifies the name of the JDBC/SQLJ Driver for OS/390 and z/OS serialized

profile that is to be converted to the DB2 Universal JDBC Driver format.

 The db2sqljupgrade utility saves the original serialized profile as

serialized-profile-name.ser_old.

db2sqljupgrade usage notes

You can use the following technique to find the correct -collection parameter value

for a serialized profile:

1. Run the db2profp utility.

2. Locate the program name in the db2profp output. The program name is the

stem for each of the four DBRMs that the SQLJ customizer produces for a

serialized profile.

For example, db2profp output from sample program Sample02.sqlj looks like

this:

===

printing contents of profile Sample02_SJProfile0

created 1137709347170 (Thu Jan 19 14:22:27 PST 2006)

DB2 consistency token is x’00000108E4C2F162’

DB2 program version string is null

DB2 program name is "SQLJ01"

associated context is Sample02ctx

profile loader is sqlj.runtime.profile.DefaultLoader@6a049a03

contains 1 customizations

COM.ibm.db2os390.sqlj.custom.DB2SQLJCustomizer@38f81a03

original source file: null

contains 2 entries

===

The program name is SQLJ01, so the four DBRMs, and the packages into which

they are bound, are SQLJ011, SQLJ012, SQLJ013, and SQLJ014.

3. Query catalog table SYSIBM.SYSPACKAGE to determine the collection ID that

is associated with the four packages. For example:

270 Application Programming Guide and Reference for Java™

|
|
|

|
|

|||||||||||||||||||||||

|
|

|

|
|
|
|
|
|
|
|

|
|
|

|
|

|
|
|

|

|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|

SELECT NAME, COLLID

 FROM SYSIBM.SYSPACKAGE

WHERE NAME IN (’SQLJ011’, ’SQLJ012’, ’SQLJ013’, ’SQLJ014’)

Enabling retrieval of DBCLOB columns with LOB locators on

DB2 UDB for OS/390 and z/OS servers

If you plan to use LOB locators to retrieve data from DBCLOB columns on DB2

UDB for OS/390 and z/OS servers, you need to run the DB2LobTableCreator

utility against those servers.

DB2LobTableCreator creates an EBCDIC table named SYSIBM.SYSDUMMYE, an

ASCII table named SYSIBM.SYSDUMMYA, and a Unicode table named

SYSIBM.SYSDUMMYU. You should create these objects only by running

DB2LobTableCreator.

To run the DB2LobTableCreator utility, you need authority to create tables in the

DSNATPDB database.

DB2LobTableCreator syntax

�� java com.ibm.db2.jcc.DB2LobTableCreator -url jdbc:db2: //server /database

:port
 �

� -user user-ID -password password

-help
 ��

DB2LobTableCreator parameter descriptions

-url

Specifies the data source at which DB2LobTableCreator is to run. The variable

parts of the -url value are:

jdbc:db2:

Indicates that the connection is to a server in the DB2 UDB family.

server

The domain name or IP address of the database server.

port

The TCP/IP server port number that is assigned to the database server.

This is an integer between 0 and 65535. The default is 446.

database

A name for the database server.

 database is the DB2 location name that is defined during installation. All

characters in this value must be uppercase characters. You can determine

the location name by executing the following SQL statement on the server:

SELECT CURRENT SERVER FROM SYSIBM.SYSDUMMY1;

-user

Specifes the user ID under which DB2LobTableCreator is to run. This user

must have authority to create tables in the DSNATPDB database.

-password

Specifes the password for the user ID.

Chapter 7. Installing the DB2 Universal JDBC Driver 271

|
|
|

|

|

|
|
|

|
|
|
|

|
|

|
|

||||||||||||||||||||
|

|
||||||||||||||||||||

|
|

|

|
|
|

|
|

|
|

|
|
|

|
|

|
|
|

|

|
|
|

|
|

-help

Specifies that the DB2LobTableCreator utility describes each of the options that

it supports. If any other options are specified with -help, they are ignored.

DB2LobTableCreator example

Run the DB2LobTableCreator to allow LOB locators to retrieve data from DBCLOB

columns in tables on a DB2 UDB for z/OS subsystem that has IP address mvs1,

port number 446, and DB2 location name SJCEC1. User DBADM has authority to

create tables in the DSNATPDB database.

java com.ibm.db2.jcc.DB2LobTableCreator -url jdbc:db2://mvs1:446/SJCEC1 \

 -user DBADM -password mypass

Verifying the installation of the DB2 Universal JDBC Driver

To verify the installation of the DB2 Universal JDBC Driver, compile and run a

simple JDBC application.

If you installed the JDBC/SQLJ Driver for OS/390 and z/OS, you can modify the

Sample01.java program to run with the DB2 Universal JDBC Driver. If the

JDBC/SQLJ Driver for OS/390 and z/OS is installed in /usr/lpp/db2810, you can

find Sample01.java in the following path:

/usr/lpp/db2810/samples

To modify Sample01.java for the DB2 Universal JDBC Driver:

1. Find this statement:

Class.forName("COM.ibm.db2os390.sqlj.jdbc.DB2SQLJDriver");

Change it to this statement:

Class.forName("com.ibm.db2.jcc.DB2Driver");

2. Find this statement:

String URLprefix = "jdbc:db2os390sqlj:";

Change it to this statement:

String URLprefix = "jdbc:db2:";

If you did not install the JDBC/SQLJ Driver for OS/390 and z/OS, you can

compile and run this program to verify your installation:

272 Application Programming Guide and Reference for Java™

|
|
|

|
|
|
|
|

|
|

|

|
|

|
|
|
|

|

|

|

|

|

|

|

|

|

|

|
|
|

/**

 * File: TestJDBCSelect.java

 *

 * Purpose: Verify DB2 Universal JDBC Driver installation.

 * This program uses Universal Driver type 2 connectivity

 * on DB2 UDB for z/OS.

 *

 * Authorization: This program requires SELECT authority on

 * DB2 catalog table SYSIBM.SYSTABLES.

 *

 * Flow:

 * - Load the DB2 Universal JDBC Driver.

 * - Get the driver version and display it.

 * - Establish a connection to the local DB2 UDB for z/OS server.

 * - Get the DB2 version and display it.

 * - Execute a query against SYSIBM.SYSTABLES.

 * - Clean up by closing all open objects.

 */

import java.sql.*;

public class TestJDBCSelect

{

 public static void main(String[] args)

 {

 try

 {

 // Load the driver and get the version

 System.out.println("\nLoading DB2 Universal JDBC Driver");

 Class.forName("com.ibm.db2.jcc.DB2Driver");

 System.out.println(" Successful load. Driver version: " +

 com.ibm.db2.jcc.DB2Version.getVersion());

 // Connect to the local DB2 UDB for z/OS server

 System.out.println("\nEstablishing connection to local server");

 Connection conn = DriverManager.getConnection("jdbc:db2:");

 System.out.println(" Successful connect");

 conn.setAutoCommit(false);

 // Use DatabaseMetaData to determine the DB2 version

 System.out.println("\nAcquiring DatabaseMetaData");

 DatabaseMetaData dbmd = conn.getMetaData();

 System.out.println(" DB2 version: " +

 dbmd.getDatabaseProductVersion());

 // Create a Statement object for executing a query

 System.out.println("\nCreating Statement");

 Statement stmt = conn.createStatement();

 System.out.println(" successful creation of Statement");

Figure 67. Example of a JDBC program for verifying the DB2 Universal JDBC Driver installation (Part 1 of 2)

Chapter 7. Installing the DB2 Universal JDBC Driver 273

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Installing the z/OS Application Connectivity to DB2 for z/OS feature

z/OS Application Connectivity to DB2 for z/OS is a DB2 UDB for OS/390 and

z/OS or DB2 UDB for z/OS feature that allows Universal Driver type 4

connectivity from clients that do not have DB2 UDB for z/OS or DB2 UDB for

OS/390 and z/OS installed to DB2 UDB for z/OS or DB2 UDB for Linux, UNIX

and Windows servers. To install the z/OS Application Connectivity to DB2 for

 // Execute the query and retrieve the ResultSet object

 String sqlText =

 "SELECT CREATOR, " +

 "NAME " +

 "FROM SYSIBM.SYSTABLES " +

 "ORDER BY CREATOR, NAME";

 System.out.println("\nPreparing to execute SELECT");

 ResultSet results = stmt.executeQuery(sqlText);

 System.out.println(" Successful execution of SELECT");

 // Retrieve and display the rows from the ResultSet

 System.out.println("\nPreparing to fetch from ResultSet");

 int recCnt = 0;

 while(results.next())

 {

 String creator = results.getString("CREATOR");

 String name = results.getString("NAME");

 System.out.println("CREATOR: <" + creator + "> NAME: <" + name + ">");

 recCnt++;

 if(recCnt == 10) break;

 }

 System.out.println(" Successful processing of ResultSet");

 // Close the ResultSet, Statement, and Connection objects

 System.out.println("\nPreparing to close ResultSet");

 results.close();

 System.out.println(" Successful close of ResultSet");

 System.out.println("\nPreparing to close Statement");

 stmt.close();

 System.out.println(" Successful close of Statement");

 System.out.println("\nPreparing to rollback Connection");

 conn.rollback();

 System.out.println(" Successful rollback");

 System.out.println("\nPreparing to close Connection");

 conn.close();

 System.out.println(" Successful close of Connection");

 }

 // Handle errors

 catch(ClassNotFoundException e)

 {

 System.err.println("Unable to load DB2 Universal Driver, " + e);

 }

 catch(SQLException e)

 {

 System.out.println("SQLException: " + e);

 e.printStackTrace();

 }

 }

}

Figure 67. Example of a JDBC program for verifying the DB2 Universal JDBC Driver installation (Part 2 of 2)

274 Application Programming Guide and Reference for Java™

|

|

|
|
|
|
|

z/OS, follow these steps. Unless otherwise noted, all steps apply to the z/OS

system on which you are installing z/OS Application Connectivity to DB2 for

z/OS.

 1. Install Java 2 Technology Edition, SDK 1.3.1 or higher.

 2. If you plan to connect to DB2 UDB for z/OS Version 7 servers, install OS/390

Support for Unicode or z/OS Support for Unicode on those servers. See

Information APARs II13048 and II13049 for more information.

 3. On the z/OS system on which you are installing z/OS Application

Connectivity to DB2 for z/OS, and on any z/OS systems that contain DB2

servers to which you plan to connect, enable TCP/IP. See IBM TCP/IP for

MVS: Customization & Administration Guide.

 4. Allocate and load the z/OS Application Connectivity to DB2 for z/OS

libraries. See “Loading the z/OS Application Connectivity to DB2 for z/OS

libraries” on page 276 for details.

 5. On all DB2 UDB for z/OS servers to which you plan to connect, enable

distributed data facility (DDF) and TCP/IP support. See Part 3 of DB2

Installation Guide.

 6. On all DB2 UDB for z/OS servers to which you plan to connect, set

subsystem parameter DESCSTAT to YES. DESCSTAT corresponds to

installation field DESCRIBE FOR STATIC on panel DSNTIPF. See Part 2 of

DB2 Installation Guide for information on setting DESCSTAT. This step is

necessary for SQLJ support.

 7. In z/OS UNIX System Services, edit your .profile file to customize the

environment variable settings. You use this step to set the libraries, paths, and

files that the DB2 Universal JDBC Driver uses. See “Setting environment

variables for the z/OS Application Connectivity to DB2 for z/OS feature” on

page 276 for details.

 8. On all DB2 UDB for z/OS servers to which you plan to connect, enable the

DB2-supplied stored procedures that are used by the DB2 Universal JDBC

Driver. See “Enabling the DB2-supplied stored procedures and defining the

tables used by the DB2 Universal JDBC Driver” on page 261.

 9. In z/OS UNIX System Services, run the DB2binder utility on the z/OS system

on which you are installing z/OS Application Connectivity to DB2 for z/OS

to bind the packages for the DB2 Universal JDBC Driver at all DB2 UDB for

z/OS servers to which you plan to connect. You need to run DB2binder once

for each server. See “Binding the packages for the DB2 Universal JDBC

Driver” on page 264.

10. If you plan to use Universal Driver type 4 connectivity to implement

distributed transactions against DB2 UDB for OS/390 and z/OS Version 7

servers: In z/OS UNIX System Services, run the DB2T4XAIndoubtUtil utility

on the z/OS system on which you are installing z/OS Application

Connectivity to DB2 for z/OS. Run the utility once for each of the DB2 UDB

for OS/390 and z/OS Version 7 servers. See “DB2T4XAIndoubtUtil for

distributed transactions with DB2 UDB for OS/390 and z/OS Version 7

servers” on page 267 for details.

11. If you plan to use LOB locators to access DBCLOB columns in DB2 tables on

DB2 UDB for z/OS servers: In z/OS UNIX System Services, run the

DB2LobTableCreator utility on each of those servers to create tables that are

needed for fetching LOB locators. See “Enabling retrieval of DBCLOB columns

with LOB locators on DB2 UDB for OS/390 and z/OS servers” on page 271.

Chapter 7. Installing the DB2 Universal JDBC Driver 275

|
|
|

|

#
#
#

|
|
|
|

|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

Loading the z/OS Application Connectivity to DB2 for z/OS

libraries

To allocate the HFS directory structure and use SMP/E to load the z/OS

Application Connectivity to DB2 for z/OS libraries, run the following jobs:

DDAALA

Creates the SMP/E consolidate software inventory (CSI) file. DDAALA is

required only if the SMP/E target and distribution zones are not created

and allocated to the SMP/E global zone.

DDAALB

Creates the z/OS Application Connectivity to DB2 for z/OS target and

distribution zones. Also creates DDDEFs for SMP/E data sets. DDAALB is

required only if the SMP/E target and distribution zones are not created

and allocated to the SMP/E global zone.

DDAALLOC

Creates the z/OS Application Connectivity to DB2 for z/OS target and

distribution libraries and defines them in the SMP/E target and

distribution zones.

DDADDDEF

Creates DDDEFs for the z/OS Application Connectivity to DB2 for z/OS

target and distribution libraries.

DDAISMKD

Invokes the DDAMKDIR EXEC to allocate the HFS directory structure for

the z/OS Application Connectivity to DB2 for z/OS.

DDARECEV

Performs the SMP/E RECEIVE function for the z/OS Application

Connectivity to DB2 for z/OS libraries.

DDAAPPLY

Performs the SMP/E APPLY CHECK and APPLY functions for the z/OS

Application Connectivity to DB2 for z/OS libraries.

DDAACCEP

Performs the SMP/E ACCEPT CHECK and ACCEPT functions for the

z/OS Application Connectivity to DB2 for z/OS libraries.

See z/OS Application Connectivity to DB2 for z/OS Program Directory for information

on allocating and loading z/OS Application Connectivity to DB2 for z/OS data

sets.

Setting environment variables for the z/OS Application

Connectivity to DB2 for z/OS feature

The environment variables that you must set are:

PATH

Modify PATH to include the directory that contains the shell scripts that

invoke DB2 Universal JDBC Driver program preparation and debugging

functions. If z/OS Application Connectivity to DB2 for z/OS is installed in

/usr/lpp/jcct4, modify PATH as follows:

export PATH=/usr/lpp/jcct4/bin:$PATH

CLASSPATH

z/OS Application Connectivity to DB2 for z/OS contains the following class

files:

276 Application Programming Guide and Reference for Java™

|

|

|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|

|

|

|
|
|
|
|
|

|
|
|

db2jcc.jar

Contains all JDBC classes and the SQLJ runtime classes for Universal

Driver type 4 connectivity.

db2jcc_javax.jar

Contains a subset of the J2EE classes that are needed for Universal Driver

type 4 connectivity.

sqlj.zip

Contains the classes that are needed to prepare SQLJ applications for

execution under the DB2 Universal JDBC Driver.

db2jcc_license_cisuz.jar

A license file that permits access to DB2 UDB servers.

Modify your CLASSPATH to include these files. If z/OS Application

Connectivity to DB2 for z/OS is installed in /usr/lpp/jcct4, modify

CLASSPATH as follows:

export CLASSPATH=/usr/lpp/jcct4/classes/db2jcc.jar: \

/usr/lpp/jcct4/classes/db2jcc_javax.jar: \

/usr/lpp/jcct4/classes/sqlj.zip: \

/usr/lpp/jcct4/classes/db2jcc_license_cisuz.jar: \

$CLASSPATH

Important: Do not include class files for both the DB2 Universal JDBC Driver

and the JDBC/SQLJ Driver for OS/390 and z/OS in your CLASSPATH. The

only exception to this rule is that you need to include classes for both drivers

in your CLASSPATH while you convert serialized profiles that you customized

under the JDBC/SQLJ Driver for OS/390 and z/OS to the format for the DB2

Universal JDBC Driver. See “Converting JDBC/SQLJ Driver for OS/390 and

z/OS serialized profiles for the DB2 Universal JDBC Driver” on page 269.

If you use Java stored procedures, you need to set additional environment

variables in a JAVAENV data set. See “Setting the run-time environment for

interpreted Java stored procedures” on page 202 for more information.

Chapter 7. Installing the DB2 Universal JDBC Driver 277

|
|
|

|
|
|

|
|
|

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

278 Application Programming Guide and Reference for Java™

Chapter 8. Installing the JDBC/SQLJ Driver for OS/390 and

z/OS

To install the JDBC/SQLJ Driver for OS/390 and z/OS, follow these steps:

1. Install Java 2 Technology Edition, SDK 1.3.1 or higher. If you plan to implement

Java stored procedures and user-defined functions on this DB2 subsystem,

install Java 2 Technology Edition, SDK 1.3.1, SDK 1.4.1, or higher.

2. When you allocate and load the DB2 libraries, include the steps that allocate

and load the JDBC and SQLJ libraries. See “Loading the JDBC and SQLJ

libraries” for details.

3. Set DB2 subsystem parameters for SQLJ support. See “Setting DB2 subsystem

parameters for SQLJ support” on page 280 for details.

4. Log on to TSO.

Specify a maximum region size of at least 200000.

Ensure that you have superuser authority (UID 0).

5. In z/OS UNIX System Services, edit your .profile file to customize the

environment variable settings. You use this step to set the libraries, paths, and

files that JDBC and SQLJ use, and to indicate which JDBC driver you want to

use. See “Setting environment variables for the JDBC/SQLJ Driver for OS/390

and z/OS” on page 280 for details.

6. Optional: In z/OS UNIX System Services, customize the SQLJ/JDBC run-time

properties file. See “The SQLJ/JDBC run-time properties file” on page 281 for

details.

The default path name is /usr/lpp/db2810/classes/db2sqljjdbc.properties. If

you use a new path name for your customized run-time properties file, you

need to specify that file name in the DB2SQLJPROPERTIES environment

variable.

7. Optional: Run the db2genJDBC utility in z/OS UNIX System Services to

customize JDBC resources. You do not need to perform this step unless you

need to alter the default JDBC resource limits. See “Customizing the JDBC

profile (optional)” on page 286 for details.

8. Prepare the JDBC DBRMs for execution.

If you did not run the db2genJDBC utility, these are the DBRMs in the

DSN810.SDSNDBRM data set. If you ran the db2genJDBC utility, these are the

DBRMs that the db2genJDBC utility produces.

In TSO, customize and run job DSNTJJCL to bind the JDBC DBRMs into

packages, and bind the packages into the JDBC plan. DSNTJJCL is in data set

DSN810.SDSNSAMP. See “Binding the DBRMs” on page 287 for details.

In TSO, grant EXECUTE authority on the packages and plan to PUBLIC.

9. Verify the installation by running a simple JDBC application. See “Verifying the

installation of the JDBC/SQLJ Driver for OS/390 and z/OS” on page 288 for

suggestions on how to do that.

Loading the JDBC and SQLJ libraries

When you install DB2, include the steps for allocating the HFS directory structure

and using SMP/E to load the JDBC and SQLJ libraries. The jobs that perform these

functions are:

© Copyright IBM Corp. 1998, 2006 279

|
|
|

DSNISMKD

Invokes the DSNMKDIR EXEC to allocate the HFS directory structure.

DSNDDEF2

Includes steps to define DDDEFs for the JDBC and SQLJ libraries.

DSNRECV3

Includes steps that perform the SMP/E RECEIVE function for the JDBC

and SQLJ libraries.

DSNAPPL2

Includes the steps that perform the SMP/E APPLY CHECK and APPLY

functions for the JDBC and SQLJ libraries.

DSNACEP2

Includes the steps that perform the SMP/E ACCEPT CHECK and ACCEPT

functions for the JDBC and SQLJ libraries.

See IBM DATABASE 2 Universal Database for z/OS Program Directory for information

on allocating and loading DB2 data sets.

Setting DB2 subsystem parameters for SQLJ support

The DESCRIBE FOR STATIC field on DB2 installation panel DSNTIPF sets

subsystem parameter DESCSTAT, which controls whether DB2 executes

DESCRIBEs on static SQL statements when it performs a bind operation. If you use

named iterators in your SQLJ programs, and you do not use online checking,

DESCRIBE FOR STATIC must be set to YES. See Part 2 of DB2 Installation Guide for

information on setting the DESCRIBE FOR STATIC. See “Using a named iterator in

an SQLJ application” on page 74 for information on named iterators. See

“Customizing an SQLJ serialized profile under the JDBC/SQLJ Driver for OS/390

and z/OS” on page 242 for information on online checking.

Setting environment variables for the JDBC/SQLJ Driver for OS/390

and z/OS

The environment variables that you must set are:

STEPLIB

Modify STEPLIB to include the SDSNEXIT, SDSNLOAD, and SDSNLOD2 data sets. For

example:

export STEPLIB=DSN810.SDSNEXIT:DSN810.SDSNLOAD:DSN810.SDSNLOD2:$STEPLIB

PATH

Modify PATH to include the directory that contains the shell scripts that

invoke JDBC and SQLJ program preparation and debugging functions. If JDBC

and SQLJ are installed in /usr/lpp/db2810, modify PATH as follows:

export PATH=/usr/lpp/db2810/bin:$PATH

The PATH environment variable is not used in the CICS environment.

LIBPATH

The DB2 UDB for z/OS JDBC/SQLJ Driver for OS/390 and z/OS contains

several dynamic load libraries (DLLs).

 Modify LIBPATH to include the directory that contains these DLLs. If SQLJ

and JDBC are installed in /usr/lpp/db2810, modify LIBPATH as follows:

export LIBPATH=/usr:/usr/lib:/usr/lpp/db2810/lib:$LIBPATH

280 Application Programming Guide and Reference for Java™

|

|
|
|
|
|
|
|
|
|

|
|
|

|

CLASSPATH

Modify the CLASSPATH to include the following file:

db2j2classes.zip

Contains all of the classes necessary to prepare and run JDBC and SQLJ

programs with the JDBC 2.0 driver. Assuming that JDBC and SQLJ are

installed in /usr/lpp/db2810, modify CLASSPATH as follows:

export CLASSPATH=/usr/lpp/db2810/classes/db2j2classes.zip:$CLASSPATH

DB2SQLJPROPERTIES

Specifies the fully-qualified name of the run-time properties file for the

JDBC/SQLJ Driver for OS/390 and z/OS. The run-time properties file contains

various entries of the form parameter=value that specify program preparation

and run-time options that the DB2 UDB for z/OS JDBC/SQLJ Driver for

OS/390 and z/OS uses. The run-time properties file is read when the driver is

loaded. If you do not set the DB2SQLJPROPERTIES environment variable, the

driver uses the default name ./db2sqljjdbc.properties.

 For example, to use a run-time properties file named db2sqljjdbc.properties

that is in the /usr/lpp/db2810/classes directory, specify:

export DB2SQLJPROPERTIES=/usr/lpp/db2810/classes/db2sqljjdbc.properties

If you use Java stored procedures, you need to set additional environment

variables in a JAVAENV data set. See “Setting the run-time environment for

interpreted Java stored procedures” on page 202 for more information.

The SQLJ/JDBC run-time properties file

The SQLJ/JDBC run-time properties file contains settings for the JDBC/SQLJ

Driver for OS/390 and z/OS. The SQLJ/JDBC run-time properties file is a text file

in which each line is of this form:

property=value

See “Properties in the JDBC/SQLJ Driver for OS/390 and z/OS SQLJ/JDBC

run-time properties file” for a list of properties that you can specify.

The JDBC/SQLJ Driver for OS/390 and z/OS determines the run-time properties

file to use in the following way:

1. If the DB2SQLJPROPERTIES environment variable is set, the driver uses the

path name that is in this environment variable.

2. If the DB2SQLJPROPERTIES environment variable is not set, the driver looks in

the current working directory for a file that is named db2sqljjdbc.properties.

3. If there is no file in the current working directory named db2sqljjdbc.properties,

the driver uses default values for all properties that can be set in the run-time

properties file.

For the CICS environment, the settings for some of the run-time properties are

different than for other environments. See “Special considerations for CICS

applications,” on page 329 for information that is specific to CICS.

Properties in the JDBC/SQLJ Driver for OS/390 and z/OS SQLJ/JDBC

run-time properties file

You can set any of the following properties in the SQLJ/JDBC run-time properties

file.

Chapter 8. Installing the JDBC/SQLJ Driver for OS/390 and z/OS 281

DB2ACCTINTERVAL

Specifies whether DB2 accounting records are produced at commit points or on

termination of the physical connection to the data source. If the value of

DB2ACCTINTERVAL is COMMIT, DB2 accounting records are produced at

commit points. For example:

DB2ACCTINTERVAL=COMMIT

Otherwise, accounting records are produced on termination of the physical

connection to the data source.

 DB2ACCTINTERVAL is not applicable to connections under CICS or IMS, or

for Java stored procedures.

DB2SQLJDBRMLIB

Specifies the fully-qualified name of the z/OS partitioned data set into which

DBRMs are placed. DBRMs are generated by the creation of a JDBC profile and

the customization step of the SQLJ program preparation process. For example:

DB2SQLJDBRMLIB=USER.DBRMLIB.DATA

The default DBRM data set name is prefix.DBRMLIB.DATA, where prefix is the

high-level qualifier that was specified in the TSO profile for the user. prefix is

usually the user's TSO user ID.

 If the DBRM data set does not already exist, you need to create it. The DBRM

data set requires space to hold all the SQL statements, with additional space

for each host variable name and some header information. The header

information requires approximately two records for each DBRM, 20 bytes for

each SQL record, and 6 bytes for each host variable. For an exact format of the

DBRM, see the DBRM mapping macro, DSNXDBRM in library

DSN810.SDSNMACS. The DCB attributes of the DBRM data set are RECFM FB

and LRECL 80.

 See “Customizing the JDBC profile (optional)” on page 286 and “Customizing

an SQLJ serialized profile under the JDBC/SQLJ Driver for OS/390 and z/OS”

on page 242 for more information on serialized profile customization.

DB2SQLJ_DISABLE_JTRACE

Specifies whether to disable Java-side tracing. Possible values are:

1 Disable Java-side tracing.

0 Do not disable Java-side tracing. 0 is the default.

DB2SQLJ_DISABLE_JTRACE_TIMESTAMP

Specifies whether to exclude timestamps from Java-side traces. Possible values

are:

1 Exclude timestamps from Java-side traces. Use this option to decrease

the size of the trace output.

0 Include timestamps in Java-side traces. 0 is the default.

DB2SQLJ_LOCAL_LOCATION_NAME

Specifies the local DB2 location name. The JDBC/SQLJ Driver for OS/390 and

z/OS uses this value instead of the DB2 LOCATION NAME installation panel

field to determine whether a connection is to the local DB2 subsystem. This

property is optional. If it is specified, it must match the DB2 LOCATION

NAME value.

282 Application Programming Guide and Reference for Java™

|
|
|
|
|
|
|
|

DB2SQLJPLANNAME

Specifies the name of the plan that is associated with a JDBC or an SQLJ

application. The plan is created by the DB2 UDB for z/OS bind process. For

example:

DB2SQLJPLANNAME=SQLJPLAN

The default name is DSNJDBC.

DB2SQLJJDBCPROGRAM

Specifies the name of the JDBC profile that is used by the JDBC/SQLJ Driver

for OS/390 and z/OS. For example:

DB2SQLJJDBCPROGRAM=CONNPROF

The default connected profile name is DSNJDBC.

 See “Customizing the JDBC profile (optional)” on page 286 for information on

creating a JDBC connected profile.

DB2SQLJSSID

Specifies the name of the DB2 subsystem to which a JDBC or an SQLJ

application connects. For example:

DB2SQLJSSID=DSN

 If you do not specify the DB2SQLJSSID property, the JDBC/SQLJ Driver for

OS/390 and z/OS uses the SSID value from the DSNHDECP data-only load

module. When you install DB2 UDB for z/OS, a DSNHDECP module is

created in the prefix.SDSNEXIT data set and the prefix.SDSNLOAD data set.

Other DSNHDECP load modules might be created in other data sets for

selected applications.

 The JDBC/SQLJ Driver for OS/390 and z/OS must load a DSNHDECP

module before it can read the SSID value. z/OS searches data sets in the

following places, and in the following order, for the DSNHDECP module:

1. Job pack area (JPA)

2. TASKLIB

3. STEPLIB or JOBLIB

4. LPA

5. Libraries in the link list

You need to ensure that if your system has more than one copy of the

DSNHDECP module, z/OS finds the data set that contains the correct copy for

the JDBC/SQLJ Driver for OS/390 and z/OS first.

DB2SQLJMULTICONTEXT

Specifies whether each connection in an application is independent of other

connections in the application, and each connection is a separate unit of work,

with its own commit scope. The value can be YES or NO. For example:

DB2SQLJMULTICONTEXT=YES

The default is YES.

 See Chapter 13, “Multiple z/OS context support in JDBC/SQLJ Driver for

OS/390 and z/OS,” on page 309 for more information on multiple z/OS

context support.

DB2CURSORHOLD

For JDBC, specifies the effect of a commit operation on open DB2 cursors

(ResultSets). The value can be YES or NO. A value of YES means that cursors

Chapter 8. Installing the JDBC/SQLJ Driver for OS/390 and z/OS 283

are not destroyed when the transaction is committed. A value of NO means

that cursors are destroyed when the transaction is committed. For example:

DB2CURSORHOLD=NO

The default is YES.

 This parameter does not affect cursors in a transaction that is rolled back. All

cursors are destroyed when a transaction is rolled back.

db2.connpool.max.size

Specifies the maximum number of concurrent physical connections (DB2

threads) that the driver maintains in the connection pool. For example:

db2.connpool.max.size=200

The default is 100.

 When this limit is reached, no new connections are added to the pool. If a

logical connection is closed, and the pool is at the maximum size, the driver

closes the underlying physical connection.

db2.connpool.idle.timeout

Specifies the minimum number of seconds that an unused physical connection

remains in the connection pool before the thread is closed. For example:

db2.connpool.idle.timeout=300

The default is 600.

 Specifying a value of zero disables idle connection timeout.

db2.connpool.connect.create.timeout

Specifies maximum number of seconds that a DataSource object waits for a

connection to a data source. This value is used when the loginTimeout

property for the DataSource object has a value of 0. For example:

db2.connpool.connect.create.timeout=300

The default is 0.

 A value of zero disables connection creation timeout.

db2.jdbc.profile.pathname

Specifies the path name that the JDBC driver uses to locate and load the JDBC

profile. For example:

db2.jdbc.profile.pathname=/usr/lpp/db2710/classes/DSNJDBC_JDBCProfile.ser

If db2.jdbc.profile.pathname is not set, the JDBC driver attempts to load the

JDBC profile as a system resource. If that fails, the driver searches the

CLASSPATH for the JDBC profile.

 You must specify db2.jdbc.profile.pathname if you are using WebSphere

Application Server Version 5.0 or later.

db2.sqlj.profile.caching

 Specifies whether serialized profiles are cached when the JVM under which

their application is running is reset. db2.sqlj.profile.caching applies only to

applications that run in a resettable JVM (applications that run in the CICS,

IMS, or Java stored procedure environment). Possible values are:

NO SQLJ serialized profiles are not cached every time the JVM is reset, so

284 Application Programming Guide and Reference for Java™

#
#
#

#

#
#
#

#
#

that new versions of the serialized profiles are loaded when the JVM is

reset. Use this option when an application is under development, and

new versions of the application and its serialized profiles are produced

frequently.

YES SQLJ serialized profiles are cached when the JVM is reset. YES is the

default.

db2.sp.lob.output.parm.size

Specifies the number of bytes of storage that the JDBC driver needs to allocate

for output LOB values when the driver cannot determine the size of those

LOBs. This situation occurs for LOB stored procedure output parameters.

 The default value for db2.sp.lob.output.parm.size is 1048576. For systems with

storage limitations and smaller LOBs, set the db2.sp.lob.output.parm.size value

to a lower number.

 For example, if you know that the output LOB size is at most 64000, set

db2.sp.lob.output.parm.size to 64000.

db2.sp.varchar.output.parm.override

Specifies whether the JDBC driver changes a JDBC VARCHAR argument in a

CallableStatement.registerOutParameter call to a JDBC LONGVARCHAR

data type. Possible values are YES and NO. The default is NO.

 A value of YES is useful for applications that are ported from platforms in

which the JDBC VARCHAR data type is mapped to an SQL VARCHAR data

type that is greater than 256 characters.

DB2SQLJ_TRACE_DUMP_FREQ

Specifies the frequency with which the internal native trace buffer is flushed to

disk. DB2SQLJ_TRACE_DUMP_FREQ applies only to native-side tracing, and

is applicable only if tracing is enabled. The value is the number of trace entries

that are written before the trace buffer is flushed to disk. A value of 1 means

that the trace buffer is flushed after each entry is written.

 You should set DB2SQLJ_TRACE_DUMP_FREQ only under the direction of

IBM Software Support.

DB2SQLJ_TRACE_FILENAME

Enables the SQLJ/JDBC trace and specifies the names of the trace files to

which the trace is written. This parameter is required for collecting trace data.

For example, specifying the following setting for

DB2SQLJ_TRACE_FILENAME enables the SQLJ/JDBC trace to two files

named /SYSTEM/tmp/jdbctrace and /SYSTEM/tmp/jdbctrace.JTRACE:

DB2SQLJ_TRACE_FILENAME=/SYSTEM/tmp/jdbctrace

See “Formatting trace data with the JDBC/SQLJ Driver for OS/390 and z/OS”

on page 326 for more information on the SQLJ/JDBC trace.

 You should set DB2SQLJ_TRACE_FILENAME only under the direction of IBM

Software Support. See “Formatting trace data with the JDBC/SQLJ Driver for

OS/390 and z/OS” on page 326 for information on formatting trace data.

DB2SQLJ_TRACE_BUFFERSIZE

Specifies the size of the trace buffer in virtual storage in kilobytes. SQLJ rounds

the number that you specify down to a multiple of 64 KB. The default is 256

KB. This is an optional parameter. For example:

DB2SQLJ_TRACE_BUFFERSIZE=1024

Chapter 8. Installing the JDBC/SQLJ Driver for OS/390 and z/OS 285

You should set DB2SQLJ_TRACE_BUFFERSIZE only under the direction of

IBM Software Support. See “Formatting trace data with the JDBC/SQLJ Driver

for OS/390 and z/OS” on page 326 for information on formatting trace data.

DB2SQLJ_TRACE_WRAP

Enables or disables wrapping of the SQLJ trace. DB2J_TRACE_WRAP can have

one of the following values:

1 Wrap the trace

0 Do not wrap the trace

The default is 1. This parameter is optional. For example:

DB2SQLJ_TRACE_WRAP=0

You should set DB2SQLJ_TRACE_WRAP only under the direction of IBM

Software Support. See “Formatting trace data with the JDBC/SQLJ Driver for

OS/390 and z/OS” on page 326 for information on formatting trace data.

DB2SQLJ_USE_CCSID420_SHAPED_CONVERTER

Specifies whether the JDBC driver uses the Java Cp420 shaped converter or the

Cp420S shaped converter for conversion of CCSID 420 data. Possible values are

0 (for Cp420) or 1 (for Cp420S).) 0 is the default.

Customizing the JDBC profile (optional)

The JDBC profile that DB2 provides is sufficient for most installations. If you need

additional resources for JDBC, you can run the db2genJDBC utility to customize

JDBC resources.

Syntax

�� db2genJDBC

DSNJDBC

- pgmname=

program-name

150

- statements=

integer

 �

�
db2jdbc.cursors

- cursors=

cursor-properties-file

5

- calls=

integer

 ��

Parameter descriptions

-pgmname

Specifies the JDBC program name. This name must be seven or fewer

characters in length. The default is DSNJDBC.

-statements

Specifes the number of sections to reserve in the DBRMs for JDBC statements

and prepared statements for non-result set processing. The default is 150.

 For CICS applications, you should not use the default value. See “Special

considerations for CICS applications,” on page 329 for more information.

-cursors

Specifies the name of the cursor properties file. The default is db2jdbc.cursors.

286 Application Programming Guide and Reference for Java™

|
|
|

The file name must be either the fully-qualified file name, or the file name

relative to the current working directory.

 The cursor properties file must be located in a directory that is specified in the

CLASSPATH environment variable, described in “Setting environment

variables for the JDBC/SQLJ Driver for OS/390 and z/OS” on page 280.

 If you do not use the default cursor properties file, you need to modify the

contents of the file before you run db2genJDBC. The cursor properties file

defines cursors that DB2 uses to retrieve rows from JDBC ResultSets. You can

customize the cursor properties file to modify the number of DB2 cursors

available for JDBC and to control cursor names. The default cursor properties

file defines 100 cursors with the WITH HOLD attribute, and 100 cursors

without the WITH HOLD attribute.

 For CICS applications, you should not use the default value. See “Special

considerations for CICS applications,” on page 329 for more information.

-calls

Specifes the number of sections to reserve in the DBRMs for JDBC callable

statements for non-result set processing. The default is 5.

Output

The db2genJDBC utility creates four DBRMs and a JDBC serialized profile. The

JDBC profile must be located in a directory that is specified in the CLASSPATH

environment variable, or the path for the JDBC profile must be specified in the

SQLJ/JDBC run-time properties file, with the db2.jdbc.profile.pathname property.

The JDBC profile name is in the following format:

program-name_JDBCProfile.ser

Binding the DBRMs

Customize and run job DSNTJJCL to bind the JDBC DBRMs into packages and

bind the packages into the DSNJDBC plan. DSNTJJCL is shipped in the DB2

DSN810.SDSNSAMP data set. If you did not run the db2genJDBC utility, the JDBC

DBRMs are in the DB2 DSN810.SDSNDBRM data set. If you ran the db2genJDBC

utility, these DBRMs are in the data set whose name you specified for the

DB2SQLJDBRMLIB property.

The DBRM names and isolation levels are shown in Table 52. program-name is

DSNJDBC, or the name that you specified for the -pgmname parameter when you

ran db2genJDBC. The default transaction level for the DSNJDBC plan is CS.

 Table 52. JDBC DBRM names and package isolation levels

DBRM name Isolation level

program-name1 UR

program-name2 CS

program-name3 RS

program-name4 RR

The default transaction level for the DSNJDBC plan is CS. To change the

transaction level of a connection in a JDBC program, use the

Connection.setTransactionIsolation method.

Chapter 8. Installing the JDBC/SQLJ Driver for OS/390 and z/OS 287

|
|
|
|
|
|
|

#
#
#
#

For SQLJ applications, you need to include the JDBC packages in every SQLJ

application plan.

Verifying the installation of the JDBC/SQLJ Driver for OS/390 and z/OS

To help you verify the installation of the JDBC/SQLJ Driver for OS/390 and z/OS

and to get you started on writing your own JDBC and SQLJ applications, DB2

UDB for z/OS provides sample JDBC program Sample01.java and sample SQLJ

program Sample02.sqlj.

The sample applications are designed to run under the JDBC/SQLJ Driver for

OS/390 and z/OS.

Sample01.java demonstrates the following techniques:

v Connecting to a data source using the DriverManager interface

v Retrieving data using the ResultSet interface

v Processing errors using the DB2 UDB for z/OS-only SQLException interface

Sample02.sqlj demonstrates the following techniques:

v Connecting to a data source using the DriverManager interface

v Retrieving data using a named iterator

v Processing errors using the DB2 UDB for z/OS-only SQLException interface

If your SQLJ driver is installed in /usr/lpp/db2810, you can find Sample01.java

and Sample02.sqlj in the following path:

/usr/lpp/db2810/samples

288 Application Programming Guide and Reference for Java™

|
|

Chapter 9. JDBC and SQLJ security

The following topics provide information on security mechanisms that are

available under the JDBC drivers:

v “Security under the DB2 Universal JDBC Driver”

v “User ID and password security under the DB2 Universal JDBC Driver” on page

290

v “User ID-only security under the DB2 Universal JDBC Driver” on page 291

v “Encrypted user ID security and encrypted password security under the DB2

Universal JDBC Driver” on page 292

v “Kerberos security under the DB2 Universal JDBC Driver” on page 293

v “Security for preparing SQLJ applications with the DB2 Universal JDBC Driver”

on page 296

v “Security under the JDBC/SQLJ Driver for OS/390 and z/OS” on page 298

Security under the DB2 Universal JDBC Driver

When you use the DB2 Universal JDBC Driver, you choose a security mechanism

by specifying a value for the securityMechanism property. You can set this property

in one of the following ways:

v If you use the DriverManager interface, set securityMechanism in a

java.util.Properties object before you invoke the form of the getConnection

method that includes the java.util.Properties parameter.

v If you use the DataSource interface, and you are creating and deploying your

own DataSource objects, invoke the DataSource.setSecurityMechanism method

after you create a DataSource object.

Table 53 lists the security mechanisms that the DB2 Universal JDBC Driver

supports, and the value that you need to specify for the securityMechanism

property to specify each security mechanism.

The default security mechanism is CLEAR_TEXT_PASSWORD_SECURITY. If the

server does not support CLEAR_TEXT_PASSWORD_SECURITY but supports

ENCRYPTED_USER_AND_PASSWORD_SECURITY, the DB2 Universal JDBC

Driver driver updates the security mechanism to

ENCRYPTED_USER_AND_PASSWORD_SECURITY and attempts to connect to the

server. Any other mismatch in security mechanism support between the requester

and the server results in an error.

 Table 53. Security mechanisms supported by the DB2 Universal JDBC Driver

Security mechanism securityMechanism property value

User ID and password DB2BaseDataSource.CLEAR_TEXT_PASSWORD_SECURITY

User ID only DB2BaseDataSource.USER_ONLY_SECURITY

User ID and encrypted password DB2BaseDataSource.ENCRYPTED_PASSWORD_SECURITY

Encrypted user ID and encrypted

password

DB2BaseDataSource.ENCRYPTED_USER_AND_PASSWORD_SECURITY

Encrypted user ID and encrypted

security-sensitive data

DB2BaseDataSource.ENCRYPTED_USER_AND_DATA_SECURITY

© Copyright IBM Corp. 1998, 2006 289

#
#
#
#
#
#
#

#
#
#

Table 53. Security mechanisms supported by the DB2 Universal JDBC Driver (continued)

Security mechanism securityMechanism property value

Encrypted user ID, encrypted

password, and encrypted

security-sensitive data

DB2BaseDataSource.ENCRYPTED_USER_PASSWORD_AND_DATA_SECURITY

Kerberos1 DB2BaseDataSource.KERBEROS_SECURITY

Note:

1. Available for Universal Driver type 4 connectivity only.

User ID and password security under the DB2 Universal JDBC Driver

To specify user ID and password security for a JDBC connection, use one of the

following techniques.

For the DriverManager interface: You can specify the user ID and password directly

in the DriverManager.getConnection invocation. For example:

import java.sql.*; // JDBC base

...

String id = "db2adm"; // Set user ID

String pw = "db2adm"; // Set password

String url = "jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";

 // Set URL for the data source

Connection con = DriverManager.getConnection(url, id, pw);

 // Create connection

Another method is to set the user ID and password directly in the URL string. For

example:

import java.sql.*; // JDBC base

...

String url =

 "jdbc:db2://mvs1.sj.ibm.com:5021/san_jose:user=db2adm;password=db2adm;";

 // Set URL for the data source

Connection con = DriverManager.getConnection(url);

 // Create connection

Alternatively, you can set the user ID and password by setting the user and

password properties in a Properties object, and then invoking the form of the

getConnection method that includes the Properties object as a parameter.

Optionally, you can set the securityMechanism property to indicate that you are

using user ID and password security. For example:

import java.sql.*; // JDBC base

import com.ibm.db2.jcc.*; // DB2® implementation of JDBC 2.0

...

Properties properties = new java.util.Properties();

 // Create Properties object

properties.put("user", "db2adm"); // Set user ID for the connection

properties.put("password", "db2adm"); // Set password for the connection

properties.put("securityMechanism",

 new String("" + com.ibm.db2.jcc.DB2BaseDataSource.CLEAR_TEXT_PASSWORD_SECURITY +

 ""));

 // Set security mechanism to

 // user ID and password

String url = "jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";

 // Set URL for the data source

Connection con = DriverManager.getConnection(url, properties);

 // Create connection

290 Application Programming Guide and Reference for Java™

#
#
#

#

For the DataSource interface: you can specify the user ID and password directly in

the DataSource.getConnection invocation. For example:

import java.sql.*; // JDBC base

import com.ibm.db2.jcc.*; // DB2 implementation of JDBC 2.0

...

Context ctx=new InitialContext(); // Create context for JNDI

DataSource ds=(DataSource)ctx.lookup("jdbc/sampledb");

 // Get DataSource object

String id = "db2adm"; // Set user ID

String pw = "db2adm"; // Set password

Connection con = ds.getConnection(id, pw);

 // Create connection

Alternatively, if you create and deploy the DataSource object, you can set the user

ID and password by invoking the DataSource.setUser and

DataSource.setPassword methods after you create the DataSource object.

Optionally, you can invoke the DataSource.setSecurityMechanism method property

to indicate that you are using user ID and password security. For example:

...

com.ibm.db2.jcc.DB2SimpleDataSource db2ds = // Create DB2SimpleDataSource object

 new com.ibm.db2.jcc.DB2SimpleDataSource();

db2ds.setDriverType(4); // Set driver type

db2ds.setDatabaseName("san_jose"); // Set location

db2ds.setServerName("mvs1.sj.ibm.com"); // Set server name

db2ds.setPortNumber(5021); // Set port number

db2ds.setUser("db2adm"); // Set user ID

db2ds.setPassword("db2adm"); // Set password

db2ds.setSecurityMechanism(

 com.ibm.db2.jcc.DB2BaseDataSource.CLEAR_TEXT_PASSWORD_SECURITY);

 // Set security mechanism to

 // user ID and password

Universal Driver type 2 connectivity with no user ID or password: For Universal

Driver type 2 connectivity, if you use user ID and password security, but you do

not specify a user ID and password, DB2 uses the external security environment,

such as the RACF security environment, that was previously established for the

user. For a CICS® connection, you cannot specify a user ID or password.

User ID-only security under the DB2 Universal JDBC Driver

To specify user ID security for a JDBC connection, use one of the following

techniques.

For the DriverManager interface: Set the user ID and security mechanism by setting

the user and securityMechanism properties in a Properties object, and then

invoking the form of the getConnection method that includes the Properties object

as a parameter. For example:

import java.sql.*; // JDBC base

import com.ibm.db2.jcc.*; // DB2® implementation of JDBC 2.0

...

Properties properties = new Properties(); // Create a Properties object

properties.put("user", "db2adm"); // Set user ID for the connection

properties.put("securityMechanism",

 new String("" + com.ibm.db2.jcc.DB2BaseDataSource.USER_ONLY_SECURITY + ""));

 // Set security mechanism to

 // user ID only

String url = "jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";

 // Set URL for the data source

Connection con = DriverManager.getConnection(url, properties);

 // Create the connection

Chapter 9. JDBC and SQLJ security 291

For the DataSource interface: If you create and deploy the DataSource object, you

can set the user ID and security mechanism by invoking the DataSource.setUser

and DataSource.setSecurityMechanism methods after you create the DataSource

object. For example:

import java.sql.*; // JDBC base

import com.ibm.db2.jcc.*; // DB2 implementation of JDBC 2.0

...

com.ibm.db2.jcc.DB2SimpleDataSource db2ds =

 new com.ibm.db2.jcc.DB2SimpleDataSource();

 // Create DB2SimpleDataSource object

db2ds.setDriverType(4); // Set the driver type

db2ds.setDatabaseName("san_jose"); // Set the location

db2ds.setServerName("mvs1.sj.ibm.com"); // Set the server name

db2ds.setPortNumber(5021); // Set the port number

db2ds.setUser("db2adm"); // Set the user ID

db2ds.setSecurityMechanism(

 com.ibm.db2.jcc.DB2BaseDataSource.USER_ONLY_SECURITY);

 // Set security mechanism to

 // user ID only

Encrypted user ID security and encrypted password security under the

DB2 Universal JDBC Driver

If you use encrypted user ID security or encrypted password security when you

access a DB2® for z/OS® server, the Java™ Cryptography Extension, IBMJCE for

z/OS needs to be enabled on the server. The Java Cryptography Extension is part

of the IBM® Developer Kit for OS/390®, Java 2 Technology Edition, or the IBM

Developer Kit for z/OS, Java 2 Technology Edition. For information on how to

enable IBMJCE, go to this URL on the Web:

http://www.ibm.com/servers/eserver/zseries/software/java/aboutj2.html

You can also use encrypted security-sensitive data in addition to encrypted user ID

security or encrypted password security when you access a DB2 for z/OS server.

You specify encryption of security-sensitive data through the

ENCRYPTED_USER_AND_DATA_SECURITY or

ENCRYPTED_USER_PASSWORD_AND_DATA_SECURITY securityMechanism value. DB2 for

z/OS encrypts the following data when you specify encryption of

security-sensitive data:

v SQL statements that are being prepared, executed, or bound into a DB2 package

v Input and output parameter information

v Result sets

v LOB data

v Results of describe operations

Before you can use encrypted security-sensitive data, the z/OS Integrated

Cryptographic Services Facility needs to be installed and enabled on the z/OS®

operating system.

To specify encrypted user ID or encrypted password security for a JDBC

connection, use one of the following techniques.

For the DriverManager interface: Set the user ID, password, and security

mechanism by setting the user, password, and securityMechanism properties in a

Properties object, and then invoking the form of the getConnection method that

includes the Properties object as a parameter. For example, use code like this to

set the user ID and encrypted password security mechanism:

292 Application Programming Guide and Reference for Java™

#
#
#
#
#
#
#
#
#
#
#
#

#
#
#

import java.sql.*; // JDBC base

import com.ibm.db2.jcc.*; // DB2 implementation of JDBC 2.0

...

Properties properties = new Properties(); // Create a Properties object

properties.put("user", "db2adm"); // Set user ID for the connection

properties.put("password", "db2adm"); // Set password for the connection

properties.put("securityMechanism",

 new String("" + com.ibm.db2.jcc.DB2BaseDataSource.ENCRYPTED_PASSWORD_SECURITY +

 ""));

 // Set security mechanism to

 // user ID and encrypted password

String url = "jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";

 // Set URL for the data source

Connection con = DriverManager.getConnection(url, properties);

 // Create the connection

For the DataSource interface: If you create and deploy the DataSource object, you

can set the user ID, password, and security mechanism by invoking the

DataSource.setUser, DataSource.setPassword, and

DataSource.setSecurityMechanism methods after you create the DataSource object.

For example, use code like this to set the encrypted user ID and encrypted

password security mechanism:

import java.sql.*; // JDBC base

import com.ibm.db2.jcc.*; // DB2 implementation of JDBC 2.0

...

com.ibm.db2.jcc.DB2SimpleDataSource db2ds =

 new com.ibm.db2.jcc.DB2SimpleDataSource();

 // Create the DataSource object

db2ds.setDriverType(4); // Set the driver type

db2ds.setDatabaseName("san_jose"); // Set the location

db2ds.setServerName("mvs1.sj.ibm.com");

 // Set the server name

db2ds.setPortNumber(5021); // Set the port number

db2ds.setUser("db2adm"); // Set the user ID

db2ds.setPassword("db2adm"); // Set the password

db2ds.setSecurityMechanism(

 com.ibm.db2.jcc.DB2BaseDataSource.ENCRYPTED_PASSWORD_SECURITY);

 // Set security mechanism to

 // encrypted user ID and password

Kerberos security under the DB2 Universal JDBC Driver

Kerberos security is available for Universal Driver type 4 connectivity only.

If you use Kerberos security when you access a DB2® for z/OS® server, you need

to install and configure the following products, or their equivalents:

v The SecureWay® Security Server for z/OS and OS/390®

v OS/390 SecureWay Security Server Network Authentication and Privacy Service,

which is a component of the OS/390 SecureWay Security Server

This is the IBM® OS/390 implementation of Kerberos Version 5.

For more information, see OS/390 SecureWay Server Network Authentication and

Privacy Service Administration.

You also need to enable the following components of the IBM Developer Kit for

OS/390, Java™ 2 Technology Edition, or the IBM Developer Kit for z/OS, Java 2

Technology Edition:

v Java Cryptography Extension (IBMJCE) for OS/390

v IBM Java Generic Security Service (IBMJGSS)

v Java Authentication and Authorization Service (JAAS) for OS/390

Chapter 9. JDBC and SQLJ security 293

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

For information on how to enable these components, go to this URL on the Web:

http://www.ibm.com/servers/eserver/zseries/software/java/aboutj2.html

There are three ways to specify Kerberos security for a connection:

v With a user ID and password

v Without a user ID or password

v With a delegated credential

 Using Kerberos security with a user ID and password:

 For this case, Kerberos uses the specified user ID and password to obtain a

ticket-granting ticket (TGT) that lets you authenticate to the DB2 server.

You need to set the user, password, kerberosServerPrincipal, and

securityMechanism properties. The kerberosServerPrincipal property specifies the

address of the Kerberos server for the realm in which the client is registered.

For the DriverManager interface: Set the user ID, password, Kerberos server, and

security mechanism by setting the user, password, kerberosServerPrincipal, and

securityMechanism properties in a Properties object, and then invoking the form

of the getConnection method that includes the Properties object as a parameter.

For example, use code like this to set the Kerberos security mechanism with a user

ID and password:

import java.sql.*; // JDBC base

import com.ibm.db2.jcc.*; // DB2 implementation of JDBC 2.0

...

Properties properties = new Properties(); // Create a Properties object

properties.put("user", "db2adm"); // Set user ID for the connection

properties.put("password", "db2adm"); // Set password for the connection

properties.put("kerberosServerPrincipal", "kdcsrv1.sj.ibm.com");

 // Set the Kerberos server

properties.put("securityMechanism",

 new String("" + com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY + ""));

 // Set security mechanism to

 // Kerberos

String url = "jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";

 // Set URL for the data source

Connection con = DriverManager.getConnection(url, properties);

 // Create the connection

For the DataSource interface: If you create and deploy the DataSource object, set

the Kerberos server and security mechanism by invoking the

DataSource.setKerberosServerPrincipal and DataSource.setSecurityMechanism

methods after you create the DataSource object. For example:

import java.sql.*; // JDBC base

import com.ibm.db2.jcc.*; // DB2 implementation of JDBC 2.0

...

com.ibm.db2.jcc.DB2SimpleDataSource db2ds =

 new com.ibm.db2.jcc.DB2SimpleDataSource();

 // Create the DataSource object

db2ds.setDriverType(4); // Set the driver type

db2ds.setDatabaseName("san_jose"); // Set the location

db2ds.setUser("db2adm"); // Set the user

db2ds.setPassword("db2adm"); // Set the password

db2ds.setServerName("mvs1.sj.ibm.com");

 // Set the server name

db2ds.setPortNumber(5021); // Set the port number

db2ds.setKerberosServerPrincipal("kdcsrv1.sj.ibm.com");

 // Set the Kerberos server

db2ds.setSecurityMechanism(

294 Application Programming Guide and Reference for Java™

com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY);

 // Set security mechanism to

 // Kerberos

 Using Kerberos security with no user ID or password:

 For this case, the Kerberos default credentials cache must contain a ticket-granting

ticket (TGT) that lets you authenticate to the DB2 server.

You need to set the kerberosServerPrincipal and securityMechanism properties.

For the DriverManager interface: Set the Kerberos server and security mechanism

by setting the kerberosServerPrincipal and securityMechanism properties in a

Properties object, and then invoking the form of the getConnection method that

includes the Properties object as a parameter. For example, use code like this to

set the Kerberos security mechanism without a user ID and password:

import java.sql.*; // JDBC base

import com.ibm.db2.jcc.*; // DB2 implementation of JDBC 2.0

...

Properties properties = new Properties(); // Create a Properties object

properties.put("kerberosServerPrincipal", "kdcsrv1.sj.ibm.com");

 // Set the Kerberos server

properties.put("securityMechanism",

 new String("" + com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY + ""));

 // Set security mechanism to

 // Kerberos

String url = "jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";

 // Set URL for the data source

Connection con = DriverManager.getConnection(url, properties);

 // Create the connection

For the DataSource interface: If you create and deploy the DataSource object, set

the Kerberos server and security mechanism by invoking the

DataSource.setKerberosServerPrincipal and DataSource.setSecurityMechanism

methods after you create the DataSource object. For example:

import java.sql.*; // JDBC base

import com.ibm.db2.jcc.*; // DB2 implementation of JDBC 2.0

...

DB2SimpleDataSource db2ds = new com.ibm.db2.jcc.DB2SimpleDataSource();

 // Create the DataSource object

db2ds.setDriverType(4); // Set the driver type

db2ds.setDatabaseName("san_jose"); // Set the location

db2ds.setServerName("mvs1.sj.ibm.com");

 // Set the server name

db2ds.setPortNumber(5021); // Set the port number

db2ds.setKerberosServerPrincipal("kdcsrv1.sj.ibm.com");

 // Set the Kerberos server

db2ds.setSecurityMechanism(

 com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY);

 // Set security mechanism to

 // Kerberos

 Using Kerberos security with a delegated credential from another principal:

 For this case, you authenticate to the DB2 server using a delegated credential that

another principal passes to you.

You need to set the kerberosServerPrincipal, gssCredential, and

securityMechanism properties.

Chapter 9. JDBC and SQLJ security 295

For the DriverManager interface: Set the Kerberos server, delegated credential, and

security mechanism by setting the kerberosServerPrincipal, and

securityMechanism properties in a Properties object. Because the gssCredential

property is not a string, you cannot use the Properties.put method to set it.

Instead, use the DB2BaseDataSource.setGSSCredential method. Then invoke the

form of the getConnection method that includes the Properties object as a

parameter. For example, use code like this to set the Kerberos security mechanism

without a user ID and password:

import java.sql.*; // JDBC base

import com.ibm.db2.jcc.*; // DB2 implementation of JDBC 2.0

...

Properties properties = new Properties(); // Create a Properties object

properties.put("kerberosServerPrincipal", "kdcsrv1.sj.ibm.com");

 // Set the Kerberos server

properties.put("gssCredential",delegatedCredential);

 // Set the delegated credential

properties.put("securityMechanism",

 new String("" + com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY + ""));

 // Set security mechanism to

 // Kerberos

String url = "jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";

 // Set URL for the data source

Connection con = DriverManager.getConnection(url, properties);

 // Create the connection

For the DataSource interface: If you create and deploy the DataSource object, set

the Kerberos server, delegated credential, and security mechanism by invoking the

DataSource.setKerberosServerPrincipal, DataSource.setGssCredential, and

DataSource.setSecurityMechanism methods after you create the DataSource object.

For example:

DB2SimpleDataSource db2ds = new com.ibm.db2.jcc.DB2SimpleDataSource();

 // Create the DataSource object

db2ds.setDriverType(4); // Set the driver type

db2ds.setDatabaseName("san_jose"); // Set the location

db2ds.setServerName("mvs1.sj.ibm.com"); // Set the server name

db2ds.setPortNumber(5021); // Set the port number

db2ds.setKerberosServerPrincipal("kdcsrv1.sj.ibm.com");

 // Set the Kerberos server

db2ds.setGssCredential(delegatedCredential);

 // Set the delegated credential

db2ds.setSecurityMechanism(

 com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY);

 // Set security mechanism to

 // Kerberos

Security for preparing SQLJ applications with the DB2 Universal JDBC

Driver

This topic contains information about the following aspects of SQLJ security:

v Allowing users to customize only

v Limiting access to a specific set of tables during customization

 Allowing users to customize only:

 You can use one of the following techniques to allow a set of users to customize

SQLJ applications, but not to bind or run those applications:

v Create a DB2 system for customization only (recommended solution): Follow

these steps:

1. Create a new DB2 subsystem. This is the customization-only system.

296 Application Programming Guide and Reference for Java™

2. On the customization-only system, define all the tables and views that are

accessed by the SQLJ applications. The table or view definitions must be the

same as the definitions on the DB2 subsystem where the application will be

bound and will run (the bind-and-run system). Executing the DESCRIBE

statement on the tables or views must give the same results on the

customization-only system and the bind-and-run system.

3. On the customization-only system, grant the necessary table or view

privileges to users who will customize SQLJ applications.

4. On the customization-only system, users run the sqlj command with the

-compile=true option to create Java byte codes and serialized profiles for

their programs. Then they run the db2sqljcustomize command with the

-automaticbind NO option to create customized serialized profiles.

5. Copy the java byte code files and customized serialized profiles to the

bind-and-run system.

6. A user with authority to bind packages on the bind-and-run system runs the

db2sqljbind command on the customized serialized profiles that were copied

from the customization-only system.
v Use a stored procedure to do customization: Write a Java stored procedure that

customizes serialized profiles and binds packages for SQLJ applications on

behalf of the end user. This Java stored procedure needs to use a JDBC driver

package that was bound with one of the DYNAMICRULES options that causes

dynamic SQL to be performed under a different user ID from the end user’s

authorization ID. For example, you might use the DYNAMICRULES option

DEFINEBIND or DEFINERUN to execute dynamic SQL under the authorization

ID of the creator of the Java stored procedure. You need to grant EXECUTE

authority on the stored procedure to users who need to do SQLJ customization.

The stored does the following things:

1. Receives the compiled SQLJ program and serialized profiles in BLOB input

parameters

2. Copies the input parameters to its file system

3. Runs db2sqljcustomize to customize the serialized profiles and bind the

packages for the SQLJ program

4. Returns the customized serialized profiles in output parameters
v Use a stand-alone program to do customization: This technique involves

writing a program that performs the same steps as writing a Java stored

procedure that customizes serialized profiles and binds packages for SQLJ

applications on behalf of the end user. However, instead of running the program

as a stored procedure, you run the program as a stand-alone program under a

library server.

 Restricting table access during customization:

 When you customize serialized profiles, you should do online checking, to give the

application program information about the data types and lengths of table columns

that the program accesses. By default, customization includes online checking.

Online checking requires that the user who customizes a serialized profile has

authorization to execute PREPARE and DESCRIBE statements against SQL

statements in the SQLJ program. That authorization includes the SELECT privilege

on tables and views that are accessed by the SQL statements. If SQL statements

contain unqualified table names, the qualifier that is used during online checking

is the value of the db2sqljcustomize -qualifier parameter. Therefore, for online

checking of tables and views with unqualified names in an SQLJ application, you

Chapter 9. JDBC and SQLJ security 297

can grant the SELECT privilege only on tables and views with a qualifier that

matches the value of the -qualifier parameter.

Security under the JDBC/SQLJ Driver for OS/390 and z/OS

This topic describes the security model for the JDBC/SQLJ Driver for OS/390 and

z/OS. It explains how authorization IDs are determined and how the choice of

DB2 attachment facility affects security.

Determining an authorization ID with the JDBC/SQLJ Driver

for OS/390 and z/OS

With the JDBC/SQLJ Driver for OS/390 and z/OS, the method that DB2 uses to

determine the SQL Authorization ID to use for a connection depends on whether

you provide user ID and password values for the connection.

v If you do not provide a user ID and password, the JDBC driver uses the external

security environment that is associated with the thread to establish the DB2

authorization ID.

v If you provide a user ID and password, the JDBC driver passes these values to

DB2 for validation, and uses these values for the connection.

DB2 attachment types and security

The security environment (the RACF ACEE) that DB2 uses to establish the DB2

authorization IDs is dependent on which DB2 attachment type you use. JDBC and

SQLJ use a DB2 attachment facility to communicate with DB2. They use the RRS

attachment facility (RRSAF) or the CICS attachment facility.

All attachment types support multithreading, that is, multiple, concurrent threads

(TCBs) that execute within a single process (address space). In a multithreading

environment, each process and thread can have its own unique security

environment. The DB2 attachment facility that you select determines which

security environment DB2 uses to verify the DB2 authorization IDs.

See “Special considerations for CICS applications,” on page 329 for information on

using the CICS attachment facility.

The DB2 RRS attachment facility (RRSAF) supports multithreading, and

applications can run under multiple authorization IDs. If you use the RRSAF, DB2

uses a task-level security environment, if present, to establish the DB2

authorization IDs.

298 Application Programming Guide and Reference for Java™

|
|
|
|

Chapter 10. JDBC and SQLJ connection pooling support

Connection pooling is part of JDBC 2.0 DataSource support, and is supported by the

JDBC/SQLJ Driver for OS/390 and z/OS and the DB2 Universal JDBC Driver. For

the DB2 Universal JDBC Driver in the z/OS environment, connection pooling is

supported for Universal Driver type 2 connectivity and Universal Driver type 4

connectivity.

The JDBC/SQLJ Driver for OS/390 and z/OS and the DB2 Universal JDBC Driver

provide a factory of pooled connections that are used by WebSphere Application

Server or other application servers. The application server actually does the

pooling. Connection pooling is completely transparent to a JDBC or SQLJ

application.

Connection pooling is a framework for caching physical data source connections,

which are equivalent to DB2 threads. When JDBC reuses physical data source

connections, the expensive operations that are required for the creation and

subsequent closing of java.sql.Connection objects are minimized.

Without connection pooling, each java.sql.Connection object represents a physical

connection to the database server. When the application establishes a connection to

a data source, DB2 creates a new physical connection to the data source. When the

application calls the java.sql.Connection.close method, DB2 terminates the

physical connection to the data source.

In contrast, with connection pooling, a java.sql.Connection object is a temporary,

logical representation of a physical data source connection. The physical data

source connection can be serially reused by logical java.sql.Connection instances.

The application can use the logical java.sql.Connection object in exactly the same

manner as it uses a java.sql.Connection object when there is no connection

pooling support.

With connection pooling, when a JDBC application invokes the

DataSource.getConnection method, the data source determines whether an

appropriate physical connection exists. If an appropriate physical connection exists,

the data source returns a java.sql.Connection instance to the application. When

the JDBC application invokes the java.sql.Connection.close method, JDBC does

not close the physical data source connection. Instead, JDBC closes only JDBC

resources, such as Statement or ResultSet objects. The data source returns the

physical connection to the connection pool for reuse.

© Copyright IBM Corp. 1998, 2006 299

300 Application Programming Guide and Reference for Java™

Chapter 11. Universal Driver type 4 connectivity JDBC and

SQLJ distributed transaction support

The DB2 Universal JDBC Driver in the z/OS environment supports distributed

transaction management when you use Universal Driver type 4 connectivity. This

support implements the Java 2 Platform, Enterprise Edition (J2EE) Java Transaction

Service (JTS) and Java Transaction API (JTA) specifications, and conforms to the

X/Open standard for global transactions (Distributed Transaction Processing: The XA

Specification, available from http://www.opengroup.org). DB2 Universal JDBC

Driver distributed transaction support lets Enterprise Java Beans (EJBs) and Java

servlets that run under WebSphere Application Server Version 5.01 and above

participate in a distributed transaction system.

A distributed transaction system consists of a resource manager, a transaction

manager, and transactional applications. Table 54 lists the products and programs

in the z/OS environment that provide those components.

 Table 54. Components of a distributed transaction system on DB2 UDB for z/OS

Distributed transaction system component Component function provided by

Resource manager DB2 UDB for z/OS or DB2 UDB for Linux,

UNIX and Windows

Transaction manager WebSphere Application Server or another

application server

Transactional applications JDBC or SQLJ applications

Your client application programs that run under the DB2 Universal JDBC Driver

can use distributed transaction support for connections to DB2 UDB for z/OS or

DB2 UDB for Linux, UNIX and Windows servers. DB2 UDB for z/OS Version 8

servers include native XA mode support. However, DB2 UDB for OS/390 and

z/OS Version 7 servers do not have native XA mode support, so the DB2 Universal

JDBC Driver emulates the XA mode support using the existing DB2 DRDA

two-phase commit protocol. This XA mode emulation uses a DB2 table named

SYSIBM.INDOUBT to store information about indoubt transactions. DB2 uses a

package named T4XAIndbtPkg to perform SQL operations on SYSIBM.INDOUBT.

If your JDBC or SQLJ applications use distributed transactions, and those

applications connect to DB2 UDB for OS/390 and z/OS Version 7 servers, you

need to run the DB2T4XAIndoubtUtil utility at those servers to create the

SYSIBM.INDOUBT table and the T4XAIndbtPkg package. You should never

modify the SYSIBM.INDOUBT table manually. See “DB2T4XAIndoubtUtil for

distributed transactions with DB2 UDB for OS/390 and z/OS Version 7 servers” on

page 267 for information on running the DB2T4XAIndoubtUtil utility.

In JDBC or SQLJ applications, distributed transactions are supported for

connections that are established using the DataSource interface. A connection is

normally established by the application server.

© Copyright IBM Corp. 1998, 2006 301

|

|

|

|
|
|
|
|
|
|
|
|

|
|
|

||

||

|#
#

||
|

||
|

|
#
#
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

Example of a distributed transaction that uses JTA methods

The best way to demonstrate distributed transactions is to contrast them with local

transactions. With local transactions, a JDBC application makes changes to a

database permanent and indicates the end of a unit of work in one of the

following ways:

v By calling the Connection.commit or Connection.rollback methods after

executing one or more SQL statements

v By calling the Connection.setAutoCommit(true) method at the beginning of the

application to commit changes after every SQL statement

Figure 68 outlines code that executes local transactions.

 In contrast, applications that participate in distributed transactions cannot call the

Connection.commit, Connection.rollback, or Connection.setAutoCommit(true)

methods within the distributed transaction. With distributed transactions, the

Connection.commit or Connection.rollback methods do not indicate transaction

boundaries. Instead, your applications let the application server manage

transaction boundaries. Distributed transactions typically involve multiple

connections to the same data source or different data sources, which can include

data sources from different manufacturers.

Figure 69 demonstrates an application that uses distributed transactions. While the

code in the example is running, the application server is also executing other EJBs

that are part of this same distributed transaction. When all EJBs have called

utx.commit(), the entire distributed transaction is committed by the application

server. If any of the EJBs are unsuccessful, the application server rolls back all the

work done by all EJBs that are associated with the distributed transaction.

con1.setAutoCommit(false); // Set autocommit off

// execute some SQL

...

con1.commit(); // Commit the transaction

// execute some more SQL

...

con1.rollback(); // Roll back the transaction

con1.setAutoCommit(true); // Enable commit after every SQL statement

...

// Execute some more SQL, which is automatically committed after

// every SQL statement.

Figure 68. Example of a local transaction

javax.transaction.UserTransaction utx;

// Use the begin method on a UserTransaction object to indicate

// the beginning of a distributed transaction.

utx.begin();

...

// Execute some SQL with one Connection object.

// Do not call Connection methods commit or rollback.

...

// Use the commit method on the UserTransaction object to

// drive all transaction branches to commit and indicate

// the end of the distributed transaction.

utx.commit();

...

Figure 69. Example of a distributed transaction under an application server

302 Application Programming Guide and Reference for Java™

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

Figure 70 illustrates a program that uses JTA methods to execute a distributed

transaction. This program acts as the transaction manager and a transactional

application. Two connections to two different data sources do SQL work under a

single distributed transaction.

class XASample

{

 javax.sql.XADataSource xaDS1;

 javax.sql.XADataSource xaDS2;

 javax.sql.XAConnection xaconn1;

 javax.sql.XAConnection xaconn2;

 javax.transaction.xa.XAResource xares1;

 javax.transaction.xa.XAResource xares2;

 java.sql.Connection conn1;

 java.sql.Connection conn2;

 public static void main (String args []) throws java.sql.SQLException

 {

 XASample xat = new XASample();

 xat.runThis(args);

 }

 // As the transaction manager, this program supplies the global

 // transaction ID and the branch qualifier. The global

 // transaction ID and the branch qualifier must not be

 // equal to each other, and the combination must be unique for

 // this transaction manager.

 public void runThis(String[] args)

 {

 byte[] gtrid = new byte[] { 0x44, 0x11, 0x55, 0x66 };

 byte[] bqual = new byte[] { 0x00, 0x22, 0x00 };

 int rc1 = 0;

 int rc2 = 0;

 try

 {

 javax.naming.InitialContext context = new javax.naming.InitialContext();

 /*

 * Note that javax.sql.XADataSource is used instead of a specific

 * driver implementation such as com.ibm.db2.jcc.DB2XADataSource,

 * which can be used only if this is a DB2 connection.

 */

 xaDS1 = (javax.sql.XADataSource)context.lookup("checkingAccounts");

 xaDS2 = (javax.sql.XADataSource)context.lookup("savingsAccounts");

 // The XADatasource contains the user ID and password.

 // Get the XAConnection object from each XADataSource

 xaconn1 = xaDS1.getXAConnection();

 xaconn2 = xaDS2.getXAConnection();

 // Get the java.sql.Connection object from each XAConnection

 conn1 = xaconn1.getConnection();

 conn2 = xaconn2.getConnection();

 // Get the XAResource object from each XAConnection

 xares1 = xaconn1.getXAResource();

 xares2 = xaconn2.getXAResource();

Figure 70. Example of a distributed transaction that uses the JTA (Part 1 of 4)

Chapter 11. Universal Driver type 4 connectivity JDBC and SQLJ distributed transaction support 303

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|

// Create the Xid object for this distributed transaction.

 // This example uses the com.ibm.db2.jcc.DB2Xid implementation

 // of the Xid interface. This Xid can be used with any JDBC driver

 // that supports JTA.

 javax.transaction.xa.Xid xid1 =

 new com.ibm.db2.jcc.DB2Xid(100, gtrid, bqual);

 // Start the distributed transaction on the two connections.

 // The two connections do NOT need to be started and ended together.

 // They might be done in different threads, along with their SQL operations.

 xares1.start(xid1, javax.transaction.xa.XAResource.TMNOFLAGS);

 xares2.start(xid1, javax.transaction.xa.XAResource.TMNOFLAGS);

...

 // Do the SQL operations on connection 1.

 // Do the SQL operations on connection 2.

...

 // Now end the distributed transaction on the two connections.

 xares1.end(xid1, javax.transaction.xa.XAResource.TMSUCCESS);

 xares2.end(xid1, javax.transaction.xa.XAResource.TMSUCCESS);

 // If connection 2 work had been done in another thread,

 // a thread.join() call would be needed here to wait until the

 // connection 2 work is done.

 try

 { // Now prepare both branches of the distributed transaction.

 // Both branches must prepare successfully before changes

 // can be committed.

 // If the distributed transaction fails, an XAException is thrown.

 rc1 = xares1.prepare(xid1);

 if(rc1 == javax.transaction.xa.XAResource.XA_OK)

 { // Prepare was successful. Prepare the second connection.

 rc2 = xares2.prepare(xid1);

 if(rc2 == javax.transaction.xa.XAResource.XA_OK)

 { // Both connections prepared successfully and neither was read-only.

 xares1.commit(xid1, false);

 xares2.commit(xid1, false);

 }

 else if(rc2 == javax.transaction.xa.XAException.XA_RDONLY)

 { // The second connection is read-only, so just commit the

 // first connection.

 xares1.commit(xid1, false);

 }

 }

 else if(rc1 == javax.transaction.xa.XAException.XA_RDONLY)

 { // SQL for the first connection is read-only (such as a SELECT).

 // The prepare committed it. Prepare the second connection.

 rc2 = xares2.prepare(xid1);

 if(rc2 == javax.transaction.xa.XAResource.XA_OK)

 { // The first connection is read-only but the second is not.

 // Commit the second connection.

 xares2.commit(xid1, false);

 }

 else if(rc2 == javax.transaction.xa.XAException.XA_RDONLY)

 { // Both connections are read-only, and both already committed,

 // so there is nothing more to do.

 }

 }

 }

Figure 70. Example of a distributed transaction that uses the JTA (Part 2 of 4)

304 Application Programming Guide and Reference for Java™

|

catch (javax.transaction.xa.XAException xae)

 { // Distributed transaction failed, so roll it back.

 // Report XAException on prepare/commit.

 System.out.println("Distributed transaction prepare/commit failed. " +

 "Rolling it back.");

 System.out.println("XAException error code = " + xae.errorCode);

 System.out.println("XAException message = " + xae.getMessage());

 xae.printStackTrace();

 try

 {

 xares1.rollback(xid1);

 }

 catch (javax.transaction.xa.XAException xae1)

 { // Report failure of rollback.

 System.out.println("distributed Transaction rollback xares1 failed");

 System.out.println("XAException error code = " + xae1.errorCode);

 System.out.println("XAException message = " + xae1.getMessage());

 }

 try

 {

 xares2.rollback(xid1);

 }

 catch (javax.transaction.xa.XAException xae2)

 { // Report failure of rollback.

 System.out.println("distributed Transaction rollback xares2 failed");

 System.out.println("XAException error code = " + xae2.errorCode);

 System.out.println("XAException message = " + xae2.getMessage());

 }

 }

 try

 {

 conn1.close();

 xaconn1.close();

 }

 catch (Exception e)

 {

 System.out.println("Failed to close connection 1: " + e.toString());

 e.printStackTrace();

 }

 try

 {

 conn2.close();

 xaconn2.close();

 }

 catch (Exception e)

 {

 System.out.println("Failed to close connection 2: " + e.toString());

 e.printStackTrace();

 }

 }

Figure 70. Example of a distributed transaction that uses the JTA (Part 3 of 4)

Chapter 11. Universal Driver type 4 connectivity JDBC and SQLJ distributed transaction support 305

|

Recommendation: For better performance, complete a distributed transaction

before you start another distributed or local transaction.

 catch (java.sql.SQLException sqe)

 {

 System.out.println("SQLException caught: " + sqe.getMessage());

 sqe.printStackTrace();

 }

 catch (javax.transaction.xa.XAException xae)

 {

 System.out.println("XA error is " + xae.getMessage());

 xae.printStackTrace();

 }

 catch (javax.naming.NamingException nme)

 {

 System.out.println(" Naming Exception: " + nme.getMessage());

 }

 }

}

Figure 70. Example of a distributed transaction that uses the JTA (Part 4 of 4)

306 Application Programming Guide and Reference for Java™

|

|
|

Chapter 12. JDBC and SQLJ global transaction support

The JDBC/SQLJ 2.0 Driver for OS/390 and z/OS and Universal Driver type 2

connectivity on DB2 UDB for z/OS include global transaction support. JDBC and

SQLJ global transaction support lets Enterprise Java Beans (EJB) and Java servlets

that run under WebSphere Application Server Version 4.0 or later access DB2 UDB

for z/OS relational data within global transactions. WebSphere Application Server

provides the environment to deploy EJBs and servlets, and RRS provides the

transaction management.

You can use global transactions in JDBC or SQLJ applications. Global transactions

are supported for connections that are established using the DriverManager or the

DataSource interface.

The best way to demonstrate global transactions is to contrast them with local

transactions. As Figure 71 shows, with local transactions, you call the commit or

rollback methods of the Connection class to make the changes to the database

permanent and indicate the end of each unit or work. Alternatively, you can use

the setAutoCommit(true) method to perform a commit operation after every SQL

statement.

 In contrast, applications cannot call the commit, rollback, or setAutoCommit(true)

methods on the Connection object when the applications are in a global

transaction. With global transactions, the commit or rollback methods on the

Connection object do not indicate transaction boundaries. Instead, your

applications let WebSphere manage transaction boundaries. Alternatively, you can

use DB2-customized Java Transaction API (JTA) interfaces to indicate the

boundaries of transactions. Although DB2 UDB for z/OS does not implement the

JTA specification, the methods for delimiting transaction boundaries are available

with the JDBC 2.0 driver. Figure 72 on page 308 demonstrates the use of the JTA

interfaces to indicate global transaction boundaries.

con1.setAutoCommit(false); // Set autocommit off

// execute some SQL ...
con1.commit(); // Commit the transaction

// execute some more SQL ...
con1.rollback(); // Roll back the transaction

con1.setAutoCommit(true); // Enable commit after every SQL statement ...

Figure 71. Example of a local transaction

© Copyright IBM Corp. 1998, 2006 307

When you run a multi-threaded client under WebSphere, a transaction can span

multiple threads. This situation might occur in a Java servlet. An application that

runs in this environment needs to perform some SQL on each Connection object

before the application passes the object to another thread. Figure 73 illustrates this

point.

javax.transaction.UserTransaction utx;

// Use the begin method on a UserTransaction object to indicate

// the beginning of a global transaction.

utx.begin(); ...
// Execute some SQL with one Connection object.

// Do not call Connection methods commit or rollback. ...
// Use the commit method on the UserTransaction object to

// drive all transaction branches to commit and indicate

// the end of the global transaction.

utx.commit(); ...

Figure 72. Example of a global transaction

javax.transaction.UserTransaction utx;

// Use the begin method on a UserTransaction object to indicate

// the beginning of a global transaction.

utx.begin(); ...
// Obtain two JDBC Connections from DataSource ds

c1 = ds.getConnection();

c2 = ds.getConnection(); ...
// Create a thread for each Connection object

ThreadClass1 tc1 = new ThreadClass1(c1);

ThreadClass2 tc2 = new ThreadClass1(c2);

Thread t1 = new Thread(tc1);

Thread t2 = new Thread(tc2);

// Execute some SQL on each Connection object to associate

// the threads with the global transaction ...
// Start the two threads that will use the Connection objects to do SQL

t1.start();

t2.start(); ...
// Use the commit method on the UserTransaction object to

// drive all transaction branches to commit and indicate

// the end of the global transaction.

utx.commit(); ...

Figure 73. Example of a global transaction in a multi-threaded environment

308 Application Programming Guide and Reference for Java™

Chapter 13. Multiple z/OS context support in JDBC/SQLJ

Driver for OS/390 and z/OS

The JDBC/SQLJ Driver for OS/390 and z/OS has multiple z/OS context support.

The z/OS context includes the application’s logical connection to the data source

and the associated internal DB2 connection information that lets the application

direct its operations to a data source. For JDBC or SQLJ applications, a context is

equivalent to a DB2 thread.

The following topics provide additional information:

v “Connecting when multiple z/OS context support is not enabled”

v “Connecting when multiple z/OS context support is enabled” on page 310

v “Enabling multiple z/OS context support” on page 310

v “Multiple context performance” on page 310

v “Connection sharing” on page 310

Connecting when multiple z/OS context support is not enabled

A context is always established when a Java thread creates its first

java.sql.Connection object. If support for multiple contexts is not enabled, then

subsequent java.sql.Connection objects created by a Java thread share that single

context. Although multiple connections can share a single context, only one

connection can have an active transaction at any time. If there is an active

transaction on a connection, a COMMIT or ROLLBACK must be issued before the

Java thread can use or create another connection object.

Without multiple context support:

v There can be one or more Java threads, any of which can issue JDBC or SQLJ

calls.

v All java.sql.Connection objects must be explicitly closed by the application Java

thread that created the connection object.

v Multiple java.sql.Connection objects can be created by a single Java thread if

the application uses the connections serially. The application must not create or

use a different connection object on the Java thread if the current connection is

not on a transaction boundary. Multiple connections cannot create concurrent

units of work.

v When more than one connection is opened, those connections are associated

with the same DB2 thread. Returning from the current connection to a previous

connection might not return you to the DB2 location that the previous

connection was originally associated with. Previous connections become

associated with the location of the most recently created connection.

v A Java thread can use a java.sql.Connection object only when the Java thread

creates the java.sql.Connection object.

v WebSphere™ Application Server connection pooling using the

″com.ibm.servlet.connmgr″ package is not possible.

© Copyright IBM Corp. 1998, 2006 309

Connecting when multiple z/OS context support is enabled

With multiple z/OS context support enabled, each java.sql.Connection object is

related to a unique context (DB2 thread). Under this model, a single Java thread

(TCB) can have multiple, concurrent connections, each with its own independent

transaction. The DB2 JDBC and SQLJ multiple context support requires:

v Use of the DB2 RRSAF attachment facility

v z/OS Context Services

With multiple z/OS context support:

v There can be one or more Java threads, any of which can issue JDBC or SQLJ

calls.

v The Java threads can create multiple java.sql.Connection objects (and derived

objects), each of which:

– Can exist concurrently with other java.sql.Connection objects.

– Has its own transaction scope that is independent from all other

java.sql.Connection objects.

– Does not need to be on a transaction boundary for a Java thread to create or

use different connections.
v The java.sql.Connection objects can be shared between Java threads. However,

the actions of one Java thread on a given connection object are also visible to all

of the Java threads using that connection. Also, the JDBC/SQLJ application is

responsible for ensuring proper serialization when sharing connection objects

between threads.

v Although it is recommended that all java.sql.Statement and

java.sql.Connection objects be explicitly closed by the application, it is not

required.

v WebSphere Application Server connection pooling using the

com.ibm.servlet.connmgr package is supported for JDBC connections only.

Enabling multiple z/OS context support

The DB2SQLJMULTICONTEXT parameter in the run-time properties file enables

multiple context support. See “The SQLJ/JDBC run-time properties file” on page

281 for information about setting the DB2SQLJMULTICONTEXT parameter.

Multiple context performance

Setting the DB2SQLJMULTICONTEXT parameter to YES enhances SQLJ and JDBC

performance.

Connection sharing

Connection sharing occurs whenever a Java thread (TCB) attempts to use a

java.sql.Connection object, or any object derived from a connection, that the Java

thread did not create.

One application of connection sharing is for cleanup of connection objects. Under

the Java Virtual Machine (JVM) on z/OS, cleanup of connection objects is usually

performed by a JVM finalizer thread, rather than the Java thread that created the

object.

Connection sharing is supported only in a multiple context environment.

310 Application Programming Guide and Reference for Java™

Chapter 14. DB2 Universal JDBC Driver support for

connection concentrator and Sysplex workload balancing

The following topics contain information about DB2 Universal JDBC Driver

support for the connection concentrator and Sysplex workload balancing functions

of DB2.

v “JDBC connection concentrator and Sysplex workload balancing”

v “Example of enabling the DB2 Universal JDBC Driver connection concentrator

and Sysplex workload balancing” on page 312

v “Techniques for monitoring DB2 Universal JDBC Driver connection concentrator

and Sysplex workload balancing” on page 313

JDBC connection concentrator and Sysplex workload balancing

Java applications that use DB2 Universal JDBC Driver type 4 connectivity to access

DB2 UDB for z/OS servers can take advantage of the connection concentrator and

Sysplex workload balancing functions.

The DB2 Universal JDBC Driver connection concentrator and Sysplex workload

balancing functions are similar to the connection concentrator and Sysplex

workload balancing functions of DB2 Connect.

The DB2 Universal JDBC Driver connection concentrator can reduce the resources

that DB2 UDB for z/OS database servers require to support large numbers of client

applications. The DB2 Universal JDBC Driver connection concentrator function lets

many connection objects use the same physical connection, which reduces the total

number of physical connections to the database server.

DB2 Universal JDBC Driver Sysplex workload balancing can improve availability

of a data sharing group. When Sysplex workload balancing is enabled, the driver

gets frequent status information about the members of a data sharing group. The

driver uses this information to determine the data sharing member to which the

next transaction should be routed. With Sysplex workload balancing, the DB2 UDB

for z/OS server and Workload Manager for z/OS (WLM) ensure that work is

distributed efficiently among members of the data sharing group and that work is

transferred to another member of a data sharing group if one member has a

failure.

The DB2 Universal JDBC Driver uses transport objects and a global transport objects

pool to support the connection concentrator and Sysplex workload balancing. There

is one transport object for each physical connection to the database server. When

you enable the connection concentrator and Sysplex workload balancing, you set

the maximum number of physical connections to the database server at any point

in time by setting the maximum number of transport objects.

At the driver level, you set limits on the number of transport objects using DB2

Universal JDBC Driver configuration properties.

At the connection level, you enable and disable the DB2 Universal JDBC Driver

connection concentrator and Sysplex workload balancing and set limits on the

number of transport objects using DataSource properties.

© Copyright IBM Corp. 1998, 2006 311

#

#

#

#
#
#
#
#
#
#
#

#
#

#
#
#

#
#
#

#
#
#
#
#

#
#
#
#
#
#
#
#
#

#
#
#
#
#
#

#
#

#
#
#

You can monitor the global transport objects pool in either of the following ways:

v Using traces that you start using DB2 Universal JDBC Driver configuration

properties

v Using an application programming interface

Example of enabling the DB2 Universal JDBC Driver connection

concentrator and Sysplex workload balancing

The following procedure is an example of enabling the DB2 Universal JDBC Driver

connection concentrator and Sysplex workload balancing functions with

WebSphere Application Server.

 Prerequisites:

 Server requirements:

v WLM for z/OS

v DB2 UDB for OS/390 and z/OS Version 7 or later, set up for data sharing

The default values for special registers in all members of the data sharing group

must be the same. The reason for this is that when the DB2 Universal JDBC

Driver balances the loads on each member of the data sharing group, it moves

the user’s connection from one member to another. If the user has set any special

register values on the original data sharing member, the driver resets all special

registers to their default values and then applies any special register changes to

the new member. However, the DB2 Universal JDBC Driver has no way to

determine the default values for all members. If two members have different

default values, the result of an SQL statement can differ, depending on which

member the statement runs on.

Client requirements:

v DB2 Universal JDBC Driver at the FixPak 10 level

v WebSphere Application Server, Version 5.1 or later

 Procedure:

1. Verify that the DB2 Universal JDBC Driver is at the correct level to support the

connection concentrator and Sysplex workload balancing by issuing the

following command in UNIX System Services:

java com.ibm.db2.jcc.DB2Jcc -version

Find a line in the output like this:

[ibm][db2][jcc] Driver: IBM DB2 JDBC Universal Driver Architecture nnn xxx

nnn should be 2.7 or later.

2. Set DB2 Universal JDBC Driver configuration properties to enable the

connection concentrator or Sysplex workload balancing for all DataSource

instances that are created under the driver.

Set the configuration properties in a DB2JccConfiguration.properties file.

a. Create a DB2JccConfiguration.properties file or edit the existing

DB2JccConfiguration.properties file.

b. Set the following configuration properties:

v db2.jcc.minTransportObjects

v db2.jcc.maxTransportObjects

v db2.jcc.maxTransportObjectWaitTime

v db2.jcc.dumpPool

312 Application Programming Guide and Reference for Java™

#

#
#

#

#
#

#

#
#
#

#

#
#
#

#
#
#
#
#
#
#
#
#
#

#
#
#

#

#
#
#

#

#

#

#

#
#
#

#

#
#

#
#
#
#
#

v db2.jcc.dumpPoolStatisticsOnScheduleFile

Start with settings similar to these:

db2.jcc.minTransportObjects=0

db2.jcc.maxTransportObjects=1500

db2.jcc.maxTransportObjectWaitTime=-1

db2.jcc.dumpPool=0

db2.jcc.dumpPoolStatisticsOnScheduleFile=/home/WAS/logs/srv1/poolstats

c. Add the directory path for DB2JccConfiguration.properties to the

WebSphere Application Server DB2 Universal JDBC Driver classpath.
3. Set DB2 Universal JDBC Driver data source properties to enable the connection

concentrator or Sysplex workload balancing.

In the WebSphere Application Server administrative console, set the following

properties for the data source that your application uses to connect to the

database server:

v enableSysplexWLB

v enableConnectionConcentrator

v maxTransportObjects

Assume that you want the connection concentrator function as well the Sysplex

workload balancing function. Start with settings similar to these:

 Table 55. Example of data source property settings for DB2 Universal JDBC Driver

connection concentrator and Sysplex workload balancing

Property Setting

enableSysplexWLB true1

maxTransportObjects 100

Note:

1. enableConnectionConcentrator is set to true by default because enableSysplexWLB is set

to true.

4. Restart WebSphere Application Server.

Techniques for monitoring DB2 Universal JDBC Driver connection

concentrator and Sysplex workload balancing

To monitor the DB2 Universal JDBC Driver connection concentrator and Sysplex

workload balancing, you need to monitor the global transport objects pool. You

can monitor the global transport objects pool in either of the following ways:

v Using traces that you start by setting DB2 Universal JDBC Driver configuration

properties

v Using an application programming interface

 Configuration properties for monitoring the global transport objects pool:

 The db2.jcc.dumpPool, db2.jcc.dumpPoolStatisticsOnSchedule, and

db2.jcc.dumpPoolStatisticsOnScheduleFile configuration properties control tracing

of the global transport objects pool.

For example, the following set of configuration property settings cause Sysplex

error messages and dump pool error messages to be written every 60 seconds to a

file named /home/WAS/logs/srv1/poolstats:

Chapter 14. DB2 Universal JDBC Driver support for connection concentrator and Sysplex workload balancing 313

#

#

#
#
#
#
#
#
#

#
#

#
#
#
#
#
#

#
#

##
#

##

##

##

#

#
#
#

#

#
#

#

#
#
#

#
#

#

#

#
#
#

#
#
#

db2.jcc.dumpPool=DUMP_SYSPLEX_MSG|DUMP_POOL_ERROR

db2.jcc.dumpPoolStatisticsOnSchedule=60

db2.jcc.dumpPoolStatisticsOnScheduleFile=/home/WAS/logs/srv1/poolstats

An entry in the pool statistics file looks like this:

time Scheduled PoolStatistics npr:2575 nsr:2575 lwroc:439 hwroc:1764 coc:372

aooc:362 rmoc:362 nbr:2872 tbt:857520 tpo:10

The meanings of the fields are:

npr The total number of requests that the DB2 Universal JDBC Driver has

made to the pool since the pool was created.

nsr The number of successful requests that the DB2 Universal JDBC Driver has

made to the pool since the pool was created. A successful request means

that the pool returned an object.

lwroc The number of objects that were reused but were not in the pool. This can

happen if a Connection object releases a transport object at a transaction

boundary. If the Connection object needs a transport object later, and the

original transport object has not been used by any other Connection object,

the Connection object can use that transport object.

hwroc The number of objects that were reused from the pool.

coc The number of objects that the DB2 Universal JDBC Driver created since

the pool was created.

aooc The number of objects that exceeded the idle time that was specified by

db2.jcc.maxTransportObjectIdleTime and were deleted from the pool.

rmoc The number of objects that have been deleted from the pool since the pool

was created.

nbr The number of requests that the DB2 Universal JDBC Driver made to the

pool that the pool blocked because the pool reached its maximum capacity.

A blocked request might be successful if an object is returned to the pool

before the db2.jcc.maxTransportObjectWaitTime is exceeded and an

exception is thrown.

tbt The total time in milliseconds for requests that were blocked by the pool.

This time can be much larger than the elapsed execution time of the

application if the application uses multiple threads.

sbt The shortest time in milliseconds that a thread waited to get a transport

object from the pool. If the time is under one millisecond, the value in this

field is zero.

lbt The longest time in milliseconds that a thread waited to get a transport

object from the pool.

abt The average amount of time in milliseconds that threads waited to get a

transport object from the pool. This value is tbt/nbr.

tpo The number of objects that are currently in the pool.

 Application programming interfaces for monitoring the global transport objects

pool:

 You can write applications to gather statistics on the global transport objects pool.

Those applications create objects in the DB2PoolMonitor class and invoke methods

to retrieve information about the pool.

314 Application Programming Guide and Reference for Java™

#
#
#

#

#
#

#

##
#

##
#
#

##
#
#
#
#

##

##
#

##
#

##
#

##
#
#
#
#

##
#
#

##
#
#

##
#

##
#

##

#
#

#
#
#

For example, the following code creates an object for monitoring the global

transport objects pool:

import com.ibm.db2.jcc.DB2PoolMonitor;

DB2PoolMonitor transportObjectPoolMonitor =

 DB2PoolMonitor.getPoolMonitor (DB2PoolMonitor.TRANSPORT_OBJECT);

After you create the DB2PoolMonitor object, you can use the following methods to

monitor the pool.

getMonitorVersion

Format:

public int getMonitorVersion()

Retrieves the version of the DB2PoolMonitor class that is shipped with the DB2

Universal JDBC Driver.

totalRequestsToPool

Format:

public int totalRequestsToPool()

Retrieves the total number of requests that the DB2 Universal JDBC Driver has

made to the pool since the pool was created.

successfullRequestsFromPool

Format:

public int successfullRequestsFromPool()

Retrieves the number of successful requests that the DB2 Universal JDBC

Driver has made to the pool since the pool was created. A successful request

means that the pool returned an object.

numberOfRequestsBlocked

Format:

public int numberOfRequestsBlocked()

Retrieves the number of requests that the DB2 Universal JDBC Driver made to

the pool that the pool blocked because the pool reached its maximum capacity.

A blocked request might be successful if an object is returned to the pool

before the db2.jcc.maxTransportObjectWaitTime is exceeded and an exception is

thrown.

totalTimeBlocked

Format:

public long totalTimeBlocked()

Retrieves the total time in milliseconds for requests that were blocked by the

pool. This time can be much larger than the elapsed execution time of the

application if the application uses multiple threads.

lightWeightReusedObjectCount

Format:

public int lightWeightReusedObjectCount()

Retrieves the number of objects that were reused but were not in the pool. This

can happen if a Connection object releases a transport object at a transaction

boundary. If the Connection object needs a transport object later, and the

original transport object has not been used by any other Connection object, the

Connection object can use that transport object.

Chapter 14. DB2 Universal JDBC Driver support for connection concentrator and Sysplex workload balancing 315

#
#

#
#
#

#
#

#
#

#

#
#

#
#

#

#
#

#
#

#

#
#
#

#
#

#

#
#
#
#
#

#
#

#

#
#
#

#
#

#

#
#
#
#
#

heavyWeightReusedObjectCount

Format:

public int heavyWeightReusedObjectCount()

Retrieves the number of objects that were reused from the pool.

createdObjectCount

Format:

public int createdObjectCount()

Retrieves the number of objects that the DB2 Universal JDBC Driver created

since the pool was created.

agedOutObjectCount

Format:

public int agedOutObjectCount()

Retrieves the number of objects that exceeded the idle time that was specified

by db2.jcc.maxTransportObjectIdleTime and were deleted from the pool.

removedObjectCount

Format:

public int removedObjectCount()

Retrieves the number of objects that have been deleted from the pool since the

pool was created.

totalPoolObjects

Format:

public int totalPoolObjects()

The number of objects that are currently in the pool.

316 Application Programming Guide and Reference for Java™

#
#

#

#

#
#

#

#
#

#
#

#

#
#

#
#

#

#
#

#
#

#

#

#

Chapter 15. Diagnosing JDBC and SQLJ problems

The following topic provide information on diagnosing JDBC and SQLJ problems.

v “JDBC and SQLJ problem diagnosis with the DB2 Universal JDBC Driver”

v “Example of a trace program under the DB2 Universal JDBC Driver” on page

320

v “Formatting trace data for C/C++ native driver code with the DB2 Universal

JDBC Driver” on page 324

v “Diagnosing SQLJ problems with the JDBC/SQLJ Driver for OS/390 and z/OS”

on page 325

JDBC and SQLJ problem diagnosis with the DB2 Universal JDBC

Driver

To obtain data for diagnosing SQLJ or JDBC problems with the DB2 Universal

JDBC Driver, collect trace data and run utilities that format the trace data. You

should run the trace and diagnostic utilities only under the direction of IBM®

software support.

 Collecting JDBC trace data:

 Use one of the following procedures to start the trace:

Procedure 1: For Universal Driver type 2 connectivity, the recommended method is

to start the trace by setting the db2.jcc.override.traceFile property and the

db2.jcc.t2zosTraceFile property in the DB2 Universal JDBC Driver configuration

properties file. See “DB2 Universal JDBC Driver configuration properties

customization” on page 253 for information on how to do this.

Procedure 2: For Universal Driver type 4 connectivity, the recommended method is

to start the trace by setting the db2.jcc.override.traceFile property or the

db2.jcc.override.traceDirectory property in the DB2 Universal JDBC Driver

configuration properties file. See “DB2 Universal JDBC Driver configuration

properties customization” on page 253 for information on how to do this.

Procedure 3:

1. If you use the DataSource interface to connect to a data source, invoke the

DB2BaseDataSource.setTraceLevel method to set the type of tracing that you

need. The default trace level is TRACE_ALL. See “Properties for the DB2

Universal JDBC Driver” on page 185 for information on how to specify more

than one type of tracing.

2. Invoke the DB2BaseDataSource.setJccLogWriter method to specify the trace

destination and turn the trace on.

Procedure 4:

If you use the DataSource interface to connect to a data source, invoke the

javax.sql.DataSource.setLogWriter method to turn the trace on. With this

method, TRACE_ALL is the only available trace level.

If you use the DriverManager interface to connect to a data source, follow this

procedure to start the trace.

© Copyright IBM Corp. 1998, 2006 317

1. Invoke the DriverManager.getConnection method with the traceLevel property

set in the info parameter or url parameter for the type of tracing that you need.

The default trace level is TRACE_ALL. See “Properties for the DB2 Universal

JDBC Driver” on page 185 for information on how to specify more than one

type of tracing.

2. Invoke the DriverManager.setLogWriter method to specify the trace destination

and turn the trace on.

After a connection is established, you can turn the trace off or back on, change the

trace destination, or change the trace level with the

DB2Connection.setJccLogWriter method. To turn the trace off, set the logWriter

value to null.

The logWriter property is an object of type java.io.PrintWriter. If your

application cannot handle java.io.PrintWriter objects, you can use the traceFile

property to specify the destination of the trace output. To use the traceFile

property, set the logWriter property to null, and set the traceFile property to the

name of the file to which the driver writes the trace data. This file and the

directory in which it resides must be writable. If the file already exists, the driver

overwrites it.

Procedure 5: If you are using the DriverManager interface, specify the traceFile and

traceLevel properties as part of the URL when you load the driver. For example:

String url = "jdbc:db2://sysmvs1.stl.ibm.com:5021/san_jose" +

 ":traceFile=/u/db2p/jcctrace;" +

 "traceLevel=" + com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DRDA_FLOWS + ";";

Example of starting a trace using configuration properties: For a complete example of

using configuration parameters to collect trace data, see “Example of using

configuration properties to start a JDBC trace” on page 319.

Trace example program: For a complete example of a program for tracing under the

DB2 Universal JDBC Driver, see “Example of a trace program under the DB2

Universal JDBC Driver” on page 320.

 Collecting SQLJ trace data during customization or bind:

 To collect trace data to diagnose problems during the SQLJ customization or bind

process, specify the -tracelevel and -tracefile options when you run the

db2sqljcustomize or db2sqljbind bind utility.

 Formatting information about an SQLJ serialized profile:

 The profp utility formats information about each SQLJ clause in a serialized

profile. The format of the profp utility is:

�� profp serialized-profile-name ��

Run the profp utility on the serialized profile for the connection in which the error

occurs. If an exception is thrown, a Java™ stack trace is generated. You can

determine which serialized profile was in use when the exception was thrown

from the stack trace.

318 Application Programming Guide and Reference for Java™

#
#
#

#
#
#

Formatting information about an SQLJ customized serialized profile:

The db2sqljprint utility formats information about each SQLJ clause in a

serialized profile that is customized for the DB2 Universal JDBC Driver. The format

of the db2sqljprint utility is:

�� db2sqljprint customized-serialized-profile-name ��

Run the db2sqljprint utility on the customized serialized profile for the

connection in which the error occurs.

Example of using configuration properties to start a JDBC trace

 Suppose that you want to collect trace data for a program named Test.java, which

uses Universal Driver type 4 connectivity. Test.java does no tracing, and you do

not want to modify the program, so you enable tracing using configuration

properties. You want your trace output to have the following characteristics:

v Trace information for each connection on the same DataSource is written to a

separate trace file. Output goes into a directory named /Trace.

v Each trace file name begins with jccTrace1.

v If trace files with the same names already exist, the trace data is appended to

them.

Although Test1.java does not contain any code to do tracing, you want to set the

configuration properties so that if the application is modified in the future to do

tracing, the settings within the program will take precedence over the settings in

the configuration properties. To do that, use the set of configuration properties that

begin with db2.jcc, not db2.jcc.override.

The configuration property settings look like this:

v db2.jcc.traceDirectory=/Trace

v db2.jcc.traceFile=jccTrace1

v db2.jcc.traceFileAppend=true

You want the trace settings to apply only to your stand-alone program Test1.java,

so you create a file with these settings, and then refer to the file when you invoke

the Java program by specifying the -Ddb2.jcc.propertiesFile option. Suppose that

the file that contains the settings is /Test/jcc.properties. To enable tracing when

you run Test1.java, you issue a command like this:

java -Ddb2.jcc.propertiesFile=/Test/jcc.properties Test1

Suppose that Test1.java creates two connections for one DataSource. The program

does not define a logWriter object, so the driver creates a global logWriter object

for the trace output. When the program completes, the following files contain the

trace data:

v /Trace/jccTrace1_global_0

v /Trace/jccTrace1_global_1

Chapter 15. Diagnosing JDBC and SQLJ problems 319

#

#
#
#
#

#
#

#

#
#

#
#
#
#
#

#
#
#
#

#
#
#
#
#

#

#
#
#
#
#
#

Example of a trace program under the DB2 Universal JDBC Driver

The following example shows a class for establishing a connection and gathering

and displaying trace data under the DB2 Universal JDBC Driver. The class includes

a method for the DriverManager interface and a method for the DataSource

interface.

public class TraceExample

{

 public static void main(String[] args)

 {

 sampleConnectUsingSimpleDataSource();

 sampleConnectWithURLUsingDriverManager();

 }

 private static void sampleConnectUsingSimpleDataSource()

 {

 java.sql.Connection c = null;

 java.io.PrintWriter printWriter =

 new java.io.PrintWriter(System.out, true);

 // Prints to console, true means

 // auto-flush so you don’t lose trace

 try {

 javax.sql.DataSource ds =

 new com.ibm.db2.jcc.DB2SimpleDataSource();

 ((com.ibm.db2.jcc.DB2BaseDataSource) ds).setServerName("sysmvs1.stl.ibm.com");

 ((com.ibm.db2.jcc.DB2BaseDataSource) ds).setPortNumber(5021);

 ((com.ibm.db2.jcc.DB2BaseDataSource) ds).setDatabaseName("san_jose");

 ((com.ibm.db2.jcc.DB2BaseDataSource) ds).setDriverType(4);

 ds.setLogWriter(printWriter); // This turns on tracing

 // Refine the level of tracing detail

 ((com.ibm.db2.jcc.DB2BaseDataSource) ds).

 setTraceLevel(com.ibm.db2.jcc.DB2SimpleDataSource.TRACE_CONNECTS |

 com.ibm.db2.jcc.DB2SimpleDataSource.TRACE_DRDA_FLOWS);

 // This connection request is traced using trace level

 // TRACE_CONNECTS | TRACE_DRDA_FLOWS

 c = ds.getConnection("myname", "mypass");

 // Change the trace level to TRACE_ALL

 // for all subsequent requests on the connection

 ((com.ibm.db2.jcc.DB2Connection) c).setJccLogWriter(printWriter,

 com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL);

Figure 74. Example of tracing under the DB2 Universal JDBC Driver (Part 1 of 5)

320 Application Programming Guide and Reference for Java™

// The following INSERT is traced using trace level TRACE_ALL

 java.sql.Statement s1 = c.createStatement();

 s1.executeUpdate("INSERT INTO sampleTable(sampleColumn) VALUES(1)");

 s1.close();

 // This code disables all tracing on the connection

 ((com.ibm.db2.jcc.DB2Connection) c).setJccLogWriter(null);

 // The following INSERT statement is not traced

 java.sql.Statement s2 = c.createStatement();

 s2.executeUpdate("INSERT INTO sampleTable(sampleColumn) VALUES(1)");

 s2.close();

 c.close();

 }

 catch(java.sql.SQLException e) {

 com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e,

 printWriter, "[TraceExample]");

 }

 finally {

 cleanup(c, printWriter);

 printWriter.flush();

 }

 }

 // If the code ran successfully, the connection should

 // already be closed. Check whether the connection is closed.

 // If so, just return.

 // If a failure occurred, try to roll back and close the connection.

 private static void cleanup(java.sql.Connection c,

 java.io.PrintWriter printWriter)

 {

 if(c == null) return;

 try {

 if(c.isClosed()) {

 printWriter.println("[TraceExample] " +

 "The connection was successfully closed");

 return;

 }

 // If we get to here, something has gone wrong.

 // Roll back and close the connection.

 printWriter.println("[TraceExample] Rolling back the connection");

 try {

 c.rollback();

 }

Figure 74. Example of tracing under the DB2 Universal JDBC Driver (Part 2 of 5)

Chapter 15. Diagnosing JDBC and SQLJ problems 321

catch(java.sql.SQLException e) {

 printWriter.println("[TraceExample] " +

 "Trapped the following java.sql.SQLException while trying to roll back:");

 com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e, printWriter,

 "[TraceExample]");

 printWriter.println("[TraceExample] " +

 "Unable to roll back the connection");

 }

 catch(java.lang.Throwable e) {

 printWriter.println("[TraceExample] Trapped the " +

 "following java.lang.Throwable while trying to roll back:");

 com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e,

 printWriter, "[TraceExample]");

 printWriter.println("[TraceExample] Unable to " +

 "roll back the connection");

 }

 // Close the connection

 printWriter.println("[TraceExample] Closing the connection");

 try {

 c.close();

 }

 catch(java.sql.SQLException e) {

 printWriter.println("[TraceExample] Exception while " +

 "trying to close the connection");

 printWriter.println("[TraceExample] Deadlocks could " +

 "occur if the connection is not closed.");

 com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e, printWriter,

 "[TraceExample]");

 }

 catch(java.lang.Throwable e) {

 printWriter.println("[TraceExample] Throwable caught " +

 "while trying to close the connection");

 printWriter.println("[TraceExample] Deadlocks could " +

 "occur if the connection is not closed.");

 com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e, printWriter,

 "[TraceExample]");

 }

 }

 catch(java.lang.Throwable e) {

 printWriter.println("[TraceExample] Unable to " +

 "force the connection to close");

 printWriter.println("[TraceExample] Deadlocks " +

 "could occur if the connection is not closed.");

 com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e, printWriter,

 "[TraceExample]");

 }

 }

Figure 74. Example of tracing under the DB2 Universal JDBC Driver (Part 3 of 5)

322 Application Programming Guide and Reference for Java™

private static void sampleConnectWithURLUsingDriverManager()

 {

 java.sql.Connection c = null;

 // This time, send the printWriter to a file.

 java.io.PrintWriter printWriter = null;

 try {

 printWriter =

 new java.io.PrintWriter(

 new java.io.BufferedOutputStream(

 new java.io.FileOutputStream("/temp/driverLog.txt"), 4096), true);

 }

 catch(java.io.FileNotFoundException e) {

 java.lang.System.err.println("Unable to establish a print writer for trace");

 java.lang.System.err.flush();

 return;

 }

 try {

 Class.forName("com.ibm.db2.jcc.DB2Driver");

 }

 catch(ClassNotFoundException e) {

 printWriter.println("[TraceExample] Universal Driver type 4 connectivity " +

 "is not in the application classpath. Unable to load driver.");

 printWriter.flush();

 return;

 }

 // This URL describes the target data source for Type 4 connectivity.

 // The traceLevel property is established through the URL syntax,

 // and driver tracing is directed to file "/temp/driverLog.txt"

 String databaseURL =

 "jdbc:db2://sysmvs1.stl.ibm.com:5021" +

 "/sample:traceFile=/temp/driverLog.txt;traceLevel=" +

 (com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DRDA_FLOWS |

 com.ibm.db2.jcc.DB2BaseDataSource.TRACE_CONNECTS) + ";";

 // Set other properties

 java.util.Properties properties = new java.util.Properties();

 properties.setProperty("user", "myname");

 properties.setProperty("password", "mypass");

Figure 74. Example of tracing under the DB2 Universal JDBC Driver (Part 4 of 5)

Chapter 15. Diagnosing JDBC and SQLJ problems 323

Formatting trace data for C/C++ native driver code with the DB2

Universal JDBC Driver

To format trace data for C/C++ native driver code under DB2 Universal JDBC

Driver type 2 connectivity on DB2 UDB for z/OS, you execute the db2jcctrace

command from the z/OS UNIX System Services command line.

You enable tracing of C/C++ native driver code by setting a value for the

db2.jcc.t2zosTraceFile property. That value is the name of the file to which the DB2

Universal JDBC Driver writes the trace data.

The value of db2.jcc.t2zosTraceFile is the name of the input file for db2jcctrace.

db2jcctrace writes formatted trace data to stdout. You can pipe the output to any

file.

The format of db2jccjtrace is:

 try {

 // This connection request is traced using trace level

 // TRACE_CONNECTS | TRACE_DRDA_FLOWS

 c = java.sql.DriverManager.getConnection(databaseURL, properties);

 // Change the trace level for all subsequent requests

 // on the connection to TRACE_ALL

 ((com.ibm.db2.jcc.DB2Connection) c).setJccLogWriter(printWriter,

 com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL);

 // The following INSERT is traced using trace level TRACE_ALL

 java.sql.Statement s1 = c.createStatement();

 s1.executeUpdate("INSERT INTO sampleTable(sampleColumn) VALUES(1)");

 s1.close();

 // Disable all tracing on the connection

 ((com.ibm.db2.jcc.DB2Connection) c).setJccLogWriter(null);

 // The following SQL insert code is not traced

 java.sql.Statement s2 = c.createStatement();

 s2.executeUpdate("insert into sampleTable(sampleColumn) values(1)");

 s2.close();

 c.close();

 }

 catch(java.sql.SQLException e) {

 com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e, printWriter,

 "[TraceExample]");

 }

 finally {

 cleanup(c, printWriter);

 printWriter.flush();

 }

 }

}

Figure 74. Example of tracing under the DB2 Universal JDBC Driver (Part 5 of 5)

324 Application Programming Guide and Reference for Java™

|

|

|
|
|

|
|
|

|
|
|

|
|

��

db2jcctrace
 (1)

format

flow

information

input-file-name

��

Notes:

1 You must specify one of these parameters.

The meanings of the parameters are:

format

Specifies that the output trace file contains formatted trace data.

 Abbreviation: fmt

flow

Specifies that the output trace file contains control flow information.

 Abbreviation: flw

information

Specifies that the output trace file contains information about the trace, such as

the version of the driver, the time at which the trace was taken, and whether

the trace file wrapped or was truncated. This information is also included in

the output trace file when you specify format or flow.

 Abbreviation: inf or info

input-file-name

Specifies the name of the file from which db2jcctrace is to read the

unformatted trace data.

Diagnosing SQLJ problems with the JDBC/SQLJ Driver for OS/390 and

z/OS

SQLJ programs can generate two types of errors:

v Recoverable errors

SQLJ reports recoverable SQL errors through the JDBC java.sql.SQLException

class. You can use methods getErrorCode and getSQLState to retrieve error

codes and SQLSTATEs. See “Handling an SQLException under the JDBC/SQLJ

Driver for OS/390 and z/OS” on page 55 for information on how to write your

application program to retrieve error codes and SQLSTATEs.

All SQLSTATEs except FFFFF are documented in Part 2 of DB2 Messages. FFFFF

is a special SQLSTATE that indicates an internal error in the JDBC/SQLJ Driver

for OS/390 and z/OS. error code values that are associated with SQLSTATE

FFFFF are also not documented. If you receive SQLSTATE FFFFF, contact your

IBM service representative.

v Non-recoverable errors

These errors do not throw an SQLException, or the application cannot catch the

exception.

To diagnose recoverable errors that generate SQLSTATE FFFFF or repeatable,

non-recoverable errors, you can collect trace data and run utilities that generate

additional diagnostic information. You should run the trace and diagnostic utilities

only under the direction of your IBM service representative.

Chapter 15. Diagnosing JDBC and SQLJ problems 325

||||||||||||||||||||||

|

|

||
|

|

|
|

|

|
|

|

|
|
|
|
|

|

|
|
|

Formatting trace data with the JDBC/SQLJ Driver for OS/390

and z/OS

Before you can format SQLJ trace data, you must set several environment

variables. You must also set several parameters in the run-time properties file that

you name in environment variable DB2SQLJPROPERTIES. “The SQLJ/JDBC

run-time properties file” on page 281 describes these variables and parameters.

In the CICS environment, configuring for traces is somewhat different than in

other environments. See “Special considerations for CICS applications,” on page

329 for information on tracing in the CICS environment.

When you set the parameter DB2SQLJ_TRACE_FILENAME in the run-time

properties file, you enable SQLJ/JDBC tracing. The JDBC/SQLJ Driver for OS/390

and z/OS generates two trace files:

v One trace file has a proprietary, binary format and must be formatted using the

db2sqljtrace command. The name of that trace file is trace-file, where trace-file is

the value to which you set DB2SQLJ_TRACE_FILENAME.

v The other trace file contains readable text, which requires no additional

formatting. The name of that trace file is trace-file.JTRACE.

If your IBM service representative requests a DB2 SQLJ/JDBC trace, you need to

format trace-file using db2sqljtrace. Send the db2sqljtrace output and

trace-file.JTRACE to IBM.

The db2sqljtrace command writes the formatted trace data to stdout. The format

of db2sqljtrace is:

�� db2sqljtrace fmt

flw
 input-file-name ��

The meanings of the parameters are:

fmt

Specifies that the output trace file is to contain a record of each time a function

is entered or exited before the failure occurs.

flw

Specifies that the output trace file is to contain the function flow before the

failure occurs.

input-file-name

Specifies the name of the file from which db2sqljtrace is to read the

unformatted trace data. This name is the name you specified for environment

variable DB2SQLJ_TRACE_FILENAME.

Running utilities to format diagnostic data

This topic describes utilities that you can run to retrieve and format diagnostic

data when an internal error occurs.

326 Application Programming Guide and Reference for Java™

Using the profp utility to format information about a serialized

profile

The profp utility formats information about each SQLJ clause in a serialized

profile. The format of the profp utility is:

�� profp serialized-profile-name ��

Run the profp utility on the serialized profile for the connection in which the error

occurs. If an exception is thrown, a Java stack trace is generated. You can

determine which serialized profile was in use when the exception was thrown

from the stack trace.

Using the db2profp utility to format information about a

JDBC/SQLJ Driver for OS/390 and z/OS customized profile

The db2profp utility formats information about each SQLJ clause in a serialized

profile that is customized for the JDBC/SQLJ Driver for OS/390 and z/OS. The

format of the db2profp utility is:

�� db2profp customized-serialized-profile-name ��

Run the db2profp utility on the customized serialized profile for the connection in

which the error occurs.

Chapter 15. Diagnosing JDBC and SQLJ problems 327

328 Application Programming Guide and Reference for Java™

Appendix. Special considerations for CICS applications

In general, writing and running JDBC and SQLJ applications for a CICS

environment is similar to writing and running any other JDBC and SQLJ

applications. However, there are some important differences.

The following topics explain the differences in running in the CICS environment

and in other environments:

v “Choosing parameter values for the SQLJ/JDBC run-time properties file”

v “Choosing parameter values for the db2genJDBC utility” on page 330

v “Choosing the number of cursors for JDBC result sets” on page 330

v “Setting environment variables for the CICS environment” on page 330

v “Connecting to DB2 in the CICS environment” on page 330

v “Commit and rollback processing in CICS SQLJ and JDBC applications” on page

331

v “Abnormal terminations in the CICS attachment facility” on page 331

v “Running traces in a CICS environment” on page 331

The CICS Transaction Server for z/OS DB2 Guide is the primary source for

information on setting up the CICS environment for JDBC and SQLJ. Refer to that

document before you read this material.

Choosing parameter values for the SQLJ/JDBC run-time properties file

Some parameters in the SQLJ/JDBC run-time properties file have different

meanings in the CICS environment from other environments. Those parameters

are:

DB2SQLJPLANNAME

This parameter is not used in a CICS environment. Specify the name of the

plan that is associated with the SQLJ or JDBC application in one of the

following places:

v The PLAN parameter of the DB2CONN definition

v The PLAN parameter of the DB2ENTRY definition

v The CPRMPLAN parameter of a dynamic plan exit

DB2SQLJ_TRACE_FILENAME

For the JVM environment, you can specify a fully-qualified path name or an

unqualified file name. If you specify an unqualified file name, the file is

allocated in the directory path that is specified by the CICS JVM environment

variable CICS_HOME.

 If you want to use the same properties file for both environments, specify a

fully-qualified path name.

DB2SQLJSSID

This parameter is not used in a CICS environment.

DB2SQLJMULTICONTEXT

This parameter is not used in a CICS environment. You cannot enable z/OS

multiple context support in the CICS environment. Each CICS Java application

can have a maximum of one connection.

© Copyright IBM Corp. 1998, 2006 329

|
|
|

Choosing parameter values for the db2genJDBC utility

The db2genJDBC creates a JDBC profile. The default value for the statements

parameters might not be appropriate for CICS applications. The default value

generates a large JDBC profile.

Choose a value for the statements parameter that is lower than the default of 150.

The default value produces more sections than are necessary for typical CICS

applications. A larger number of sections results in a larger JDBC profile size. A

value of 10 should be adequate for most CICS applications.

Choosing the number of cursors for JDBC result sets

The cursor properties file describes the DB2 cursors that the JDBC/SQLJ Driver for

OS/390 and z/OS uses to process JDBC result sets. The default cursor properties

file, db2jdbc.cursors, defines 100 cursors with the WITH HOLD attribute, and 100

cursors without the WITH HOLD attribute. This number of cursors is too large for

CICS applications, and it results in a JDBC profile size that is large enough to

degrade performance.

Specifying five cursors with hold and five cursors without hold should be should

be adequate for most CICS applications.

Setting environment variables for the CICS environment

For CICS JDBC and SQLJ programs that run in the JVM environment, the way in

which you specify environment variables depends on the release of CICS:

v For CICS Transaction Server V1R3, you specify the environment variables that

are listed in “Setting environment variables for the JDBC/SQLJ Driver for

OS/390 and z/OS” on page 280 in the DFHJVM member of the SDFHENV data

set. The DB2SQLJPROPERTIES environment variable specifies the name of the

run-time properties file.

v For CICS Transaction Server V2R2 or later, which uses the IBM Developer Kit for

OS/390, Java 2 Technology Edition, SDK 1.3.1 or later, the DB2SQLJPROPERTIES

environment variable is not used. You need to set all system properties that are

required by the JDBC/SQLJ Driver for OS/390 and z/OS in the system

properties file that is referenced by the JVMPROPS parameter in the relevant

JVM profile. For more information, see CICS Transaction Server for z/OS DB2

Guide.

Connecting to DB2 in the CICS environment

For SQLJ or JDBC applications in a CICS environment, the connection to DB2 is

always through the CICS attachment facility. Unlike SQLJ and JDBC applications

that use other attachment facilities, SQLJ and JDBC applications that use the CICS

attachment facility can create only one JDBC java.sql.Connection object within a

unit of work. That java.sql.Connection object is associated with the CICS unit of

work. CICS coordinates all DB2 updates within the unit of work.

A program that runs in the CICS environment cannot specify a user ID or

password in a getConnection method call. Doing so causes an SQLException.

In CICS DB2 programs that are written in languages other than Java, calling

applications and called applications can share a DB2 thread. JDBC does not allow

several applications to share a java.sql.Connection object, which, in the CICS

330 Application Programming Guide and Reference for Java™

|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|

environment, means that calling applications and called applications cannot share a

DB2 thread. Therefore, if a CICS application is doing DB2 work, and that

application calls an SQLJ or JDBC application, the calling application needs to

commit all updates before calling the SQLJ or JDBC application.

The CICS attachment facility supports multithreading. Multiple Java threads are

supported for a single CICS application. However, only the Java thread for the

main application is associated with the DB2 attachment. JDBC and SQLJ processing

is not supported for Java child threads.

In a CICS SQLJ or JDBC application, you need to explicitly close the

java.sql.Connection before the program ends. This ensures that work done on the

Connection object is committed and that the java.sql.Connection object is

available for use by another application.

In the CICS environment, when an application creates a Connection object using

the default URL ("jdbc:default:connection" or "jdbc:db2os390sqlj:"), CICS

continues an existing connection for a DB2 thread. The new Connection object has

the previous server location and transaction state. When you close this Connection

object, CICS does not do an automatic commit, and the application does not throw

an SQLException if the DB2 thread is not on a transaction boundary.

Commit and rollback processing in CICS SQLJ and JDBC applications

In a CICS environment, the default state of autoCommit for a JDBC connection is

off. You can use JDBC and SQLJ commit and rollback processing in your CICS

applications. The JDBC/SQLJ Driver for OS/390 and z/OS translates commit and

rollback statements to CICS syncpoint calls. The scope of those calls is the entire

CICS transaction.

Abnormal terminations in the CICS attachment facility

Abends in code that is called by the JDBC/SQLJ Driver for OS/390 and z/OS,

such as abends in the CICS attachment facility, do not generate exceptions in SQLJ

or JDBC programs.

A CICS attachment facility abend causes a rollback to the last syncpoint.

Running traces in a CICS environment

When you trace a JDBC or SQLJ CICS application that runs in a JVM, the trace

output goes to trace-file (the binary trace) and trace-file.JTRACE (the readable trace),

as described in “Formatting trace data with the JDBC/SQLJ Driver for OS/390 and

z/OS” on page 326.

Appendix. Special considerations for CICS applications 331

332 Application Programming Guide and Reference for Java™

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1998, 2006 333

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

J46A/G4

555 Bailey Avenue

San Jose, CA 95141-1003

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

Programming interface information

This book is intended to help the customer write applications that use Java to

access IBM DB2 UDB for z/OS servers. This book primarily documents

General-use Programming Interface and Associated Guidance Information

provided by DB2 Universal Database for z/OS (DB2 UDB for z/OS).

General-use programming interfaces allow the customer to write programs that

obtain the services of DB2 UDB for z/OS.

334 Application Programming Guide and Reference for Java™

Trademarks

The following terms are trademarks of International Business Machines

Corporation in the United States, other countries, or both.

 CICS

 Cloudscape

 DB2

 DB2 Universal Database

 DRDA

 IBM

 ibm.com

 IMS

 Language Environment

 MVS

 Notes

 OS/390

 RACF

 RETAIN

 SecureWay

 WebSphere

 z/OS

 zSeries

Java and all Java-based trademarks and logos are trademarks or registered

trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product, and service names may be trademarks or service marks

of others.

Notices 335

336 Application Programming Guide and Reference for Java™

Glossary

The following terms and abbreviations are

defined as they are used in the DB2 library.

A

abend. Abnormal end of task.

abend reason code. A 4-byte hexadecimal code that

uniquely identifies a problem with DB2.

abnormal end of task (abend). Termination of a task,

job, or subsystem because of an error condition that

recovery facilities cannot resolve during execution.

access method services. The facility that is used to

define and reproduce VSAM key-sequenced data sets.

access path. The path that is used to locate data that is

specified in SQL statements. An access path can be

indexed or sequential.

active log. The portion of the DB2 log to which log

records are written as they are generated. The active

log always contains the most recent log records,

whereas the archive log holds those records that are

older and no longer fit on the active log.

active member state. A state of a member of a data

sharing group. The cross-system coupling facility

identifies each active member with a group and

associates the member with a particular task, address

space, and z/OS system. A member that is not active

has either a failed member state or a quiesced member

state.

address space. A range of virtual storage pages that is

identified by a number (ASID) and a collection of

segment and page tables that map the virtual pages to

real pages of the computer’s memory.

address space connection. The result of connecting an

allied address space to DB2. Each address space that

contains a task that is connected to DB2 has exactly one

address space connection, even though more than one

task control block (TCB) can be present. See also allied

address space and task control block.

address space identifier (ASID). A unique

system-assigned identifier for and address space.

administrative authority. A set of related privileges

that DB2 defines. When you grant one of the

administrative authorities to a person’s ID, the person

has all of the privileges that are associated with that

administrative authority.

after trigger. A trigger that is defined with the trigger

activation time AFTER.

agent. As used in DB2, the structure that associates all

processes that are involved in a DB2 unit of work. An

allied agent is generally synonymous with an allied

thread. System agents are units of work that process

tasks that are independent of the allied agent, such as

prefetch processing, deferred writes, and service tasks.

aggregate function. An operation that derives its

result by using values from one or more rows. Contrast

with scalar function.

alias. An alternative name that can be used in SQL

statements to refer to a table or view in the same or a

remote DB2 subsystem.

allied address space. An area of storage that is

external to DB2 and that is connected to DB2. An allied

address space is capable of requesting DB2 services.

allied thread. A thread that originates at the local DB2

subsystem and that can access data at a remote DB2

subsystem.

allocated cursor. A cursor that is defined for stored

procedure result sets by using the SQL ALLOCATE

CURSOR statement.

already verified. An LU 6.2 security option that

allows DB2 to provide the user’s verified authorization

ID when allocating a conversation. With this option, the

user is not validated by the partner DB2 subsystem.

ambiguous cursor. A database cursor that is in a plan

or package that contains either PREPARE or EXECUTE

IMMEDIATE SQL statements, and for which the

following statements are true: the cursor is not defined

with the FOR READ ONLY clause or the FOR UPDATE

OF clause; the cursor is not defined on a read-only

result table; the cursor is not the target of a WHERE

CURRENT clause on an SQL UPDATE or DELETE

statement.

American National Standards Institute (ANSI). An

organization consisting of producers, consumers, and

general interest groups, that establishes the procedures

by which accredited organizations create and maintain

voluntary industry standards in the United States.

ANSI. American National Standards Institute.

APAR. Authorized program analysis report.

APAR fix corrective service. A temporary correction

of an IBM software defect. The correction is temporary,

© Copyright IBM Corp. 1998, 2006 337

|
|

 #
 #
 #

 |
 |
 |
 |
 |
 |
 |
 |
 |

because it is usually replaced at a later date by a more

permanent correction, such as a program temporary fix

(PTF).

APF. Authorized program facility.

API. Application programming interface.

APPL. A VTAM® network definition statement that is

used to define DB2 to VTAM as an application program

that uses SNA LU 6.2 protocols.

application. A program or set of programs that

performs a task; for example, a payroll application.

application-directed connection. A connection that an

application manages using the SQL CONNECT

statement.

application plan. The control structure that is

produced during the bind process. DB2 uses the

application plan to process SQL statements that it

encounters during statement execution.

application process. The unit to which resources and

locks are allocated. An application process involves the

execution of one or more programs.

application programming interface (API). A

functional interface that is supplied by the operating

system or by a separately orderable licensed program

that allows an application program that is written in a

high-level language to use specific data or functions of

the operating system or licensed program.

application requester. The component on a remote

system that generates DRDA® requests for data on

behalf of an application. An application requester

accesses a DB2 database server using the DRDA

application-directed protocol.

application server. The target of a request from a

remote application. In the DB2 environment, the

application server function is provided by the

distributed data facility and is used to access DB2 data

from remote applications.

archive log. The portion of the DB2 log that contains

log records that have been copied from the active log.

ASCII. An encoding scheme that is used to represent

strings in many environments, typically on PCs and

workstations. Contrast with EBCDIC and Unicode.

ASID. Address space identifier.

attachment facility. An interface between DB2 and

TSO, IMS, CICS, or batch address spaces. An

attachment facility allows application programs to

access DB2.

attribute. A characteristic of an entity. For example, in

database design, the phone number of an employee is

one of that employee’s attributes.

authorization ID. A string that can be verified for

connection to DB2 and to which a set of privileges is

allowed. It can represent an individual, an

organizational group, or a function, but DB2 does not

determine this representation.

authorized program analysis report (APAR). A report

of a problem that is caused by a suspected defect in a

current release of an IBM supplied program.

authorized program facility (APF). A facility that

permits the identification of programs that are

authorized to use restricted functions.

automatic query rewrite. A process that examines an

SQL statement that refers to one or more base tables,

and, if appropriate, rewrites the query so that it

performs better. This process can also determine

whether to rewrite a query so that it refers to one or

more materialized query tables that are derived from

the source tables.

auxiliary index. An index on an auxiliary table in

which each index entry refers to a LOB.

auxiliary table. A table that stores columns outside

the table in which they are defined. Contrast with base

table.

B

backout. The process of undoing uncommitted

changes that an application process made. This might

be necessary in the event of a failure on the part of an

application process, or as a result of a deadlock

situation.

backward log recovery. The fourth and final phase of

restart processing during which DB2 scans the log in a

backward direction to apply UNDO log records for all

aborted changes.

base table. (1) A table that is created by the SQL

CREATE TABLE statement and that holds persistent

data. Contrast with result table and temporary table.

 (2) A table containing a LOB column definition. The

actual LOB column data is not stored with the base

table. The base table contains a row identifier for each

row and an indicator column for each of its LOB

columns. Contrast with auxiliary table.

base table space. A table space that contains base

tables.

basic predicate. A predicate that compares two values.

basic sequential access method (BSAM). An access

method for storing or retrieving data blocks in a

continuous sequence, using either a sequential-access or

a direct-access device.

APF • basic sequential access method (BSAM)

338 Application Programming Guide and Reference for Java™

|

 |
 |
 |
 |
 |
 |
 |

batch message processing program. In IMS, an

application program that can perform batch-type

processing online and can access the IMS input and

output message queues.

before trigger. A trigger that is defined with the

trigger activation time BEFORE.

binary integer. A basic data type that can be further

classified as small integer or large integer.

binary large object (BLOB). A sequence of bytes in

which the size of the value ranges from 0 bytes to

2 GB−1. Such a string has a CCSID value of 65535.

binary string. A sequence of bytes that is not

associated with a CCSID. For example, the BLOB data

type is a binary string.

bind. The process by which the output from the SQL

precompiler is converted to a usable control structure,

often called an access plan, application plan, or

package. During this process, access paths to the data

are selected and some authorization checking is

performed. The types of bind are:

 automatic bind. (More correctly, automatic rebind) A

process by which SQL statements are bound

automatically (without a user issuing a BIND

command) when an application process begins

execution and the bound application plan or

package it requires is not valid.

 dynamic bind. A process by which SQL statements

are bound as they are entered.

 incremental bind. A process by which SQL

statements are bound during the execution of an

application process.

 static bind. A process by which SQL statements are

bound after they have been precompiled. All static

SQL statements are prepared for execution at the

same time.

bit data. Data that is character type CHAR or

VARCHAR and has a CCSID value of 65535.

BLOB. Binary large object.

block fetch. A capability in which DB2 can retrieve, or

fetch, a large set of rows together. Using block fetch can

significantly reduce the number of messages that are

being sent across the network. Block fetch applies only

to cursors that do not update data.

BMP. Batch Message Processing (IMS). See batch

message processing program.

bootstrap data set (BSDS). A VSAM data set that

contains name and status information for DB2, as well

as RBA range specifications, for all active and archive

log data sets. It also contains passwords for the DB2

directory and catalog, and lists of conditional restart

and checkpoint records.

BSAM. Basic sequential access method.

BSDS. Bootstrap data set.

buffer pool. Main storage that is reserved to satisfy

the buffering requirements for one or more table spaces

or indexes.

built-in data type. A data type that IBM supplies.

Among the built-in data types for DB2 UDB for z/OS

are string, numeric, ROWID, and datetime. Contrast

with distinct type.

built-in function. A function that DB2 supplies.

Contrast with user-defined function.

business dimension. A category of data, such as

products or time periods, that an organization might

want to analyze.

C

cache structure. A coupling facility structure that

stores data that can be available to all members of a

Sysplex. A DB2 data sharing group uses cache

structures as group buffer pools.

CAF. Call attachment facility.

call attachment facility (CAF). A DB2 attachment

facility for application programs that run in TSO or

z/OS batch. The CAF is an alternative to the DSN

command processor and provides greater control over

the execution environment.

call-level interface (CLI). A callable application

programming interface (API) for database access, which

is an alternative to using embedded SQL. In contrast to

embedded SQL, DB2 ODBC (which is based on the CLI

architecture) does not require the user to precompile or

bind applications, but instead provides a standard set

of functions to process SQL statements and related

services at run time.

cascade delete. The way in which DB2 enforces

referential constraints when it deletes all descendent

rows of a deleted parent row.

CASE expression. An expression that is selected based

on the evaluation of one or more conditions.

cast function. A function that is used to convert

instances of a (source) data type into instances of a

different (target) data type. In general, a cast function

has the name of the target data type. It has one single

argument whose type is the source data type; its return

type is the target data type.

castout. The DB2 process of writing changed pages

from a group buffer pool to disk.

castout owner. The DB2 member that is responsible

for casting out a particular page set or partition.

batch message processing program • castout owner

Glossary 339

|
|
|
|

#
#
#

#
#

catalog. In DB2, a collection of tables that contains

descriptions of objects such as tables, views, and

indexes.

catalog table. Any table in the DB2 catalog.

CCSID. Coded character set identifier.

CDB. Communications database.

CDRA. Character Data Representation Architecture.

CEC. Central electronic complex. See central processor

complex.

central electronic complex (CEC). See central processor

complex.

central processor (CP). The part of the computer that

contains the sequencing and processing facilities for

instruction execution, initial program load, and other

machine operations.

central processor complex (CPC). A physical

collection of hardware (such as an ES/3090™) that

consists of main storage, one or more central

processors, timers, and channels.

CFRM. Coupling facility resource management.

CFRM policy. A declaration by a z/OS administrator

regarding the allocation rules for a coupling facility

structure.

character conversion. The process of changing

characters from one encoding scheme to another.

Character Data Representation Architecture (CDRA).

An architecture that is used to achieve consistent

representation, processing, and interchange of string

data.

character large object (CLOB). A sequence of bytes

representing single-byte characters or a mixture of

single- and double-byte characters where the size of the

value can be up to 2 GB−1. In general, character large

object values are used whenever a character string

might exceed the limits of the VARCHAR type.

character set. A defined set of characters.

character string. A sequence of bytes that represent bit

data, single-byte characters, or a mixture of single-byte

and multibyte characters.

check constraint. A user-defined constraint that

specifies the values that specific columns of a base table

can contain.

check integrity. The condition that exists when each

row in a table conforms to the check constraints that

are defined on that table. Maintaining check integrity

requires DB2 to enforce check constraints on operations

that add or change data.

check pending. A state of a table space or partition

that prevents its use by some utilities and by some SQL

statements because of rows that violate referential

constraints, check constraints, or both.

checkpoint. A point at which DB2 records internal

status information on the DB2 log; the recovery process

uses this information if DB2 abnormally terminates.

child lock. For explicit hierarchical locking, a lock that

is held on either a table, page, row, or a large object

(LOB). Each child lock has a parent lock. See also parent

lock.

CI. Control interval.

CICS. Represents (in this publication): CICS

Transaction Server for z/OS: Customer Information

Control System Transaction Server for z/OS.

CICS attachment facility. A DB2 subcomponent that

uses the z/OS subsystem interface (SSI) and

cross-storage linkage to process requests from CICS to

DB2 and to coordinate resource commitment.

CIDF. Control interval definition field.

claim. A notification to DB2 that an object is being

accessed. Claims prevent drains from occurring until

the claim is released, which usually occurs at a commit

point. Contrast with drain.

claim class. A specific type of object access that can be

one of the following isolation levels:

 Cursor stability (CS)

 Repeatable read (RR)

 Write

claim count. A count of the number of agents that are

accessing an object.

class of service. A VTAM term for a list of routes

through a network, arranged in an order of preference

for their use.

class word. A single word that indicates the nature of

a data attribute. For example, the class word PROJ

indicates that the attribute identifies a project.

clause. In SQL, a distinct part of a statement, such as

a SELECT clause or a WHERE clause.

CLI. Call- level interface.

client. See requester.

CLIST. Command list. A language for performing

TSO tasks.

CLOB. Character large object.

closed application. An application that requires

exclusive use of certain statements on certain DB2

catalog • closed application

340 Application Programming Guide and Reference for Java™

|

 |
 |
 |
 |

 |
 |
 |
 |

 |
 |
 |

objects, so that the objects are managed solely through

the application’s external interface.

CLPA. Create link pack area.

clustering index. An index that determines how rows

are physically ordered (clustered) in a table space. If a

clustering index on a partitioned table is not a

partitioning index, the rows are ordered in cluster

sequence within each data partition instead of spanning

partitions. Prior to Version 8 of DB2 UDB for z/OS, the

partitioning index was required to be the clustering

index.

coded character set. A set of unambiguous rules that

establish a character set and the one-to-one

relationships between the characters of the set and their

coded representations.

coded character set identifier (CCSID). A 16-bit

number that uniquely identifies a coded representation

of graphic characters. It designates an encoding scheme

identifier and one or more pairs consisting of a

character set identifier and an associated code page

identifier.

code page. (1) A set of assignments of characters to

code points. In EBCDIC, for example, the character 'A'

is assigned code point X'C1' (2) , and character 'B' is

assigned code point X'C2'. Within a code page, each

code point has only one specific meaning.

code point. In CDRA, a unique bit pattern that

represents a character in a code page.

code unit. The fundamental binary width in a

computer architecture that is used for representing

character data, such as 7 bits, 8 bits, 16 bits, or 32 bits.

Depending on the character encoding form that is used,

each code point in a coded character set can be

represented internally by one or more code units.

coexistence. During migration, the period of time in

which two releases exist in the same data sharing

group.

cold start. A process by which DB2 restarts without

processing any log records. Contrast with warm start.

collection. A group of packages that have the same

qualifier.

column. The vertical component of a table. A column

has a name and a particular data type (for example,

character, decimal, or integer).

column function. See aggregate function.

"come from" checking. An LU 6.2 security option that

defines a list of authorization IDs that are allowed to

connect to DB2 from a partner LU.

command. A DB2 operator command or a DSN

subcommand. A command is distinct from an SQL

statement.

command prefix. A one- to eight-character command

identifier. The command prefix distinguishes the

command as belonging to an application or subsystem

rather than to MVS.

command recognition character (CRC). A character

that permits a z/OS console operator or an IMS

subsystem user to route DB2 commands to specific DB2

subsystems.

command scope. The scope of command operation in

a data sharing group. If a command has member scope,

the command displays information only from the one

member or affects only non-shared resources that are

owned locally by that member. If a command has group

scope, the command displays information from all

members, affects non-shared resources that are owned

locally by all members, displays information on

sharable resources, or affects sharable resources.

commit. The operation that ends a unit of work by

releasing locks so that the database changes that are

made by that unit of work can be perceived by other

processes.

commit point. A point in time when data is

considered consistent.

committed phase. The second phase of the multisite

update process that requests all participants to commit

the effects of the logical unit of work.

common service area (CSA). In z/OS, a part of the

common area that contains data areas that are

addressable by all address spaces.

communications database (CDB). A set of tables in

the DB2 catalog that are used to establish conversations

with remote database management systems.

comparison operator. A token (such as =, >, or <) that

is used to specify a relationship between two values.

composite key. An ordered set of key columns of the

same table.

compression dictionary. The dictionary that controls

the process of compression and decompression. This

dictionary is created from the data in the table space or

table space partition.

concurrency. The shared use of resources by more

than one application process at the same time.

conditional restart. A DB2 restart that is directed by a

user-defined conditional restart control record (CRCR).

connection. In SNA, the existence of a communication

path between two partner LUs that allows information

CLPA • connection

Glossary 341

|
|
|
|
|
|
|
|

#
#
#
#
#
#

#

to be exchanged (for example, two DB2 subsystems

that are connected and communicating by way of a

conversation).

connection context. In SQLJ, a Java object that

represents a connection to a data source.

connection declaration clause. In SQLJ, a statement

that declares a connection to a data source.

connection handle. The data object containing

information that is associated with a connection that

DB2 ODBC manages. This includes general status

information, transaction status, and diagnostic

information.

connection ID. An identifier that is supplied by the

attachment facility and that is associated with a specific

address space connection.

consistency token. A timestamp that is used to

generate the version identifier for an application. See

also version.

constant. A language element that specifies an

unchanging value. Constants are classified as string

constants or numeric constants. Contrast with variable.

constraint. A rule that limits the values that can be

inserted, deleted, or updated in a table. See referential

constraint, check constraint, and unique constraint.

context. The application’s logical connection to the

data source and associated internal DB2 ODBC

connection information that allows the application to

direct its operations to a data source. A DB2 ODBC

context represents a DB2 thread.

contracting conversion. A process that occurs when

the length of a converted string is smaller than that of

the source string. For example, this process occurs

when an EBCDIC mixed-data string that contains DBCS

characters is converted to ASCII mixed data; the

converted string is shorter because of the removal of

the shift codes.

control interval (CI). A fixed-length area or disk in

which VSAM stores records and creates distributed free

space. Also, in a key-sequenced data set or file, the set

of records that an entry in the sequence-set index

record points to. The control interval is the unit of

information that VSAM transmits to or from disk. A

control interval always includes an integral number of

physical records.

control interval definition field (CIDF). In VSAM, a

field that is located in the 4 bytes at the end of each

control interval; it describes the free space, if any, in the

control interval.

conversation. Communication, which is based on LU

6.2 or Advanced Program-to-Program Communication

(APPC), between an application and a remote

transaction program over an SNA logical unit-to-logical

unit (LU-LU) session that allows communication while

processing a transaction.

coordinator. The system component that coordinates

the commit or rollback of a unit of work that includes

work that is done on one or more other systems.

copy pool. A named set of SMS storage groups that

contains data that is to be copied collectively. A copy

pool is an SMS construct that lets you define which

storage groups are to be copied by using FlashCopy®

functions. HSM determines which volumes belong to a

copy pool.

copy target. A named set of SMS storage groups that

are to be used as containers for copy pool volume

copies. A copy target is an SMS construct that lets you

define which storage groups are to be used as

containers for volumes that are copied by using

FlashCopy functions.

copy version. A point-in-time FlashCopy copy that is

managed by HSM. Each copy pool has a version

parameter that specifies how many copy versions are

maintained on disk.

correlated columns. A relationship between the value

of one column and the value of another column.

correlated subquery. A subquery (part of a WHERE

or HAVING clause) that is applied to a row or group of

rows of a table or view that is named in an outer

subselect statement.

correlation ID. An identifier that is associated with a

specific thread. In TSO, it is either an authorization ID

or the job name.

correlation name. An identifier that designates a table,

a view, or individual rows of a table or view within a

single SQL statement. It can be defined in any FROM

clause or in the first clause of an UPDATE or DELETE

statement.

cost category. A category into which DB2 places cost

estimates for SQL statements at the time the statement

is bound. A cost estimate can be placed in either of the

following cost categories:

v A: Indicates that DB2 had enough information to

make a cost estimate without using default values.

v B: Indicates that some condition exists for which DB2

was forced to use default values for its estimate.

The cost category is externalized in the

COST_CATEGORY column of the

DSN_STATEMNT_TABLE when a statement is

explained.

coupling facility. A special PR/SM™ LPAR logical

partition that runs the coupling facility control program

and provides high-speed caching, list processing, and

locking functions in a Parallel Sysplex®.

connection context • coupling facility

342 Application Programming Guide and Reference for Java™

 |
 |
 |
 |
 |
 |

 |
 |
 |
 |
 |
 |

 |
 |
 |
 |

coupling facility resource management. A component

of z/OS that provides the services to manage coupling

facility resources in a Parallel Sysplex. This

management includes the enforcement of CFRM

policies to ensure that the coupling facility and

structure requirements are satisfied.

CP. Central processor.

CPC. Central processor complex.

C++ member. A data object or function in a structure,

union, or class.

C++ member function. An operator or function that is

declared as a member of a class. A member function

has access to the private and protected data members

and to the member functions of objects in its class.

Member functions are also called methods.

C++ object. (1) A region of storage. An object is

created when a variable is defined or a new function is

invoked. (2) An instance of a class.

CRC. Command recognition character.

CRCR. Conditional restart control record. See also

conditional restart.

create link pack area (CLPA). An option that is used

during IPL to initialize the link pack pageable area.

created temporary table. A table that holds temporary

data and is defined with the SQL statement CREATE

GLOBAL TEMPORARY TABLE. Information about

created temporary tables is stored in the DB2 catalog,

so this kind of table is persistent and can be shared

across application processes. Contrast with declared

temporary table. See also temporary table.

cross-memory linkage. A method for invoking a

program in a different address space. The invocation is

synchronous with respect to the caller.

cross-system coupling facility (XCF). A component of

z/OS that provides functions to support cooperation

between authorized programs that run within a

Sysplex.

cross-system extended services (XES). A set of z/OS

services that allow multiple instances of an application

or subsystem, running on different systems in a Sysplex

environment, to implement high-performance,

high-availability data sharing by using a coupling

facility.

CS. Cursor stability.

CSA. Common service area.

CT. Cursor table.

current data. Data within a host structure that is

current with (identical to) the data within the base

table.

current SQL ID. An ID that, at a single point in time,

holds the privileges that are exercised when certain

dynamic SQL statements run. The current SQL ID can

be a primary authorization ID or a secondary

authorization ID.

current status rebuild. The second phase of restart

processing during which the status of the subsystem is

reconstructed from information on the log.

cursor. A named control structure that an application

program uses to point to a single row or multiple rows

within some ordered set of rows of a result table. A

cursor can be used to retrieve, update, or delete rows

from a result table.

cursor sensitivity. The degree to which database

updates are visible to the subsequent FETCH

statements in a cursor. A cursor can be sensitive to

changes that are made with positioned update and

delete statements specifying the name of that cursor. A

cursor can also be sensitive to changes that are made

with searched update or delete statements, or with

cursors other than this cursor. These changes can be

made by this application process or by another

application process.

cursor stability (CS). The isolation level that provides

maximum concurrency without the ability to read

uncommitted data. With cursor stability, a unit of work

holds locks only on its uncommitted changes and on

the current row of each of its cursors.

cursor table (CT). The copy of the skeleton cursor

table that is used by an executing application process.

cycle. A set of tables that can be ordered so that each

table is a descendent of the one before it, and the first

table is a descendent of the last table. A self-referencing

table is a cycle with a single member.

D

DAD. See Document access definition.

disk. A direct-access storage device that records data

magnetically.

database. A collection of tables, or a collection of table

spaces and index spaces.

database access thread. A thread that accesses data at

the local subsystem on behalf of a remote subsystem.

database administrator (DBA). An individual who is

responsible for designing, developing, operating,

safeguarding, maintaining, and using a database.

coupling facility resource management • database administrator (DBA)

Glossary 343

|
|
|
|
|
|

 |

 |
 |

database alias. The name of the target server if

different from the location name. The database alias

name is used to provide the name of the database

server as it is known to the network. When a database

alias name is defined, the location name is used by the

application to reference the server, but the database

alias name is used to identify the database server to be

accessed. Any fully qualified object names within any

SQL statements are not modified and are sent

unchanged to the database server.

database descriptor (DBD). An internal representation

of a DB2 database definition, which reflects the data

definition that is in the DB2 catalog. The objects that

are defined in a database descriptor are table spaces,

tables, indexes, index spaces, relationships, check

constraints, and triggers. A DBD also contains

information about accessing tables in the database.

database exception status. An indication that

something is wrong with a database. All members of a

data sharing group must know and share the exception

status of databases.

database identifier (DBID). An internal identifier of

the database.

database management system (DBMS). A software

system that controls the creation, organization, and

modification of a database and the access to the data

that is stored within it.

database request module (DBRM). A data set

member that is created by the DB2 precompiler and

that contains information about SQL statements.

DBRMs are used in the bind process.

database server. The target of a request from a local

application or an intermediate database server. In the

DB2 environment, the database server function is

provided by the distributed data facility to access DB2

data from local applications, or from a remote database

server that acts as an intermediate database server.

data currency. The state in which data that is

retrieved into a host variable in your program is a copy

of data in the base table.

data definition name (ddname). The name of a data

definition (DD) statement that corresponds to a data

control block containing the same name.

data dictionary. A repository of information about an

organization’s application programs, databases, logical

data models, users, and authorizations. A data

dictionary can be manual or automated.

data-driven business rules. Constraints on particular

data values that exist as a result of requirements of the

business.

Data Language/I (DL/I). The IMS data manipulation

language; a common high-level interface between a

user application and IMS.

data mart. A small data warehouse that applies to a

single department or team. See also data warehouse.

data mining. The process of collecting critical business

information from a data warehouse, correlating it, and

uncovering associations, patterns, and trends.

data partition. A VSAM data set that is contained

within a partitioned table space.

data-partitioned secondary index (DPSI). A secondary

index that is partitioned. The index is partitioned

according to the underlying data.

data sharing. The ability of two or more DB2

subsystems to directly access and change a single set of

data.

data sharing group. A collection of one or more DB2

subsystems that directly access and change the same

data while maintaining data integrity.

data sharing member. A DB2 subsystem that is

assigned by XCF services to a data sharing group.

data source. A local or remote relational or

non-relational data manager that is capable of

supporting data access via an ODBC driver that

supports the ODBC APIs. In the case of DB2 UDB for

z/OS, the data sources are always relational database

managers.

data space. In releases prior to DB2 UDB for z/OS,

Version 8, a range of up to 2 GB of contiguous virtual

storage addresses that a program can directly

manipulate. Unlike an address space, a data space can

hold only data; it does not contain common areas,

system data, or programs.

data type. An attribute of columns, literals, host

variables, special registers, and the results of functions

and expressions.

data warehouse. A system that provides critical

business information to an organization. The data

warehouse system cleanses the data for accuracy and

currency, and then presents the data to decision makers

so that they can interpret and use it effectively and

efficiently.

date. A three-part value that designates a day, month,

and year.

date duration. A decimal integer that represents a

number of years, months, and days.

datetime value. A value of the data type DATE, TIME,

or TIMESTAMP.

DBA. Database administrator.

database alias • DBA

344 Application Programming Guide and Reference for Java™

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

 |
 |
 |
 |
 |
 |

DBCLOB. Double-byte character large object.

DBCS. Double-byte character set.

DBD. Database descriptor.

DBID. Database identifier.

DBMS. Database management system.

DBRM. Database request module.

DB2 catalog. Tables that are maintained by DB2 and

contain descriptions of DB2 objects, such as tables,

views, and indexes.

DB2 command. An instruction to the DB2 subsystem

that a user enters to start or stop DB2, to display

information on current users, to start or stop databases,

to display information on the status of databases, and

so on.

DB2 for VSE & VM. The IBM DB2 relational database

management system for the VSE and VM operating

systems.

DB2I. DB2 Interactive.

DB2 Interactive (DB2I). The DB2 facility that provides

for the execution of SQL statements, DB2 (operator)

commands, programmer commands, and utility

invocation.

DB2I Kanji Feature. The tape that contains the panels

and jobs that allow a site to display DB2I panels in

Kanji.

DB2 PM. DB2 Performance Monitor.

DB2 thread. The DB2 structure that describes an

application’s connection, traces its progress, processes

resource functions, and delimits its accessibility to DB2

resources and services.

DCLGEN. Declarations generator.

DDF. Distributed data facility.

ddname. Data definition name.

deadlock. Unresolvable contention for the use of a

resource, such as a table or an index.

declarations generator (DCLGEN). A subcomponent

of DB2 that generates SQL table declarations and

COBOL, C, or PL/I data structure declarations that

conform to the table. The declarations are generated

from DB2 system catalog information. DCLGEN is also

a DSN subcommand.

declared temporary table. A table that holds

temporary data and is defined with the SQL statement

DECLARE GLOBAL TEMPORARY TABLE. Information

about declared temporary tables is not stored in the

DB2 catalog, so this kind of table is not persistent and

can be used only by the application process that issued

the DECLARE statement. Contrast with created

temporary table. See also temporary table.

default value. A predetermined value, attribute, or

option that is assumed when no other is explicitly

specified.

deferred embedded SQL. SQL statements that are

neither fully static nor fully dynamic. Like static

statements, they are embedded within an application,

but like dynamic statements, they are prepared during

the execution of the application.

deferred write. The process of asynchronously writing

changed data pages to disk.

degree of parallelism. The number of concurrently

executed operations that are initiated to process a

query.

delete-connected. A table that is a dependent of table

P or a dependent of a table to which delete operations

from table P cascade.

delete hole. The location on which a cursor is

positioned when a row in a result table is refetched and

the row no longer exists on the base table, because

another cursor deleted the row between the time the

cursor first included the row in the result table and the

time the cursor tried to refetch it.

delete rule. The rule that tells DB2 what to do to a

dependent row when a parent row is deleted. For each

relationship, the rule might be CASCADE, RESTRICT,

SET NULL, or NO ACTION.

delete trigger. A trigger that is defined with the

triggering SQL operation DELETE.

delimited identifier. A sequence of characters that are

enclosed within double quotation marks ("). The

sequence must consist of a letter followed by zero or

more characters, each of which is a letter, digit, or the

underscore character (_).

delimiter token. A string constant, a delimited

identifier, an operator symbol, or any of the special

characters that are shown in DB2 syntax diagrams.

denormalization. A key step in the task of building a

physical relational database design. Denormalization is

the intentional duplication of columns in multiple

tables, and the consequence is increased data

redundancy. Denormalization is sometimes necessary to

minimize performance problems. Contrast with

normalization.

dependent. An object (row, table, or table space) that

has at least one parent. The object is also said to be a

dependent (row, table, or table space) of its parent. See

also parent row, parent table, parent table space.

DBCLOB • dependent

Glossary 345

dependent row. A row that contains a foreign key that

matches the value of a primary key in the parent row.

dependent table. A table that is a dependent in at

least one referential constraint.

DES-based authenticator. An authenticator that is

generated using the DES algorithm.

descendent. An object that is a dependent of an object

or is the dependent of a descendent of an object.

descendent row. A row that is dependent on another

row, or a row that is a descendent of a dependent row.

descendent table. A table that is a dependent of

another table, or a table that is a descendent of a

dependent table.

deterministic function. A user-defined function whose

result is dependent on the values of the input

arguments. That is, successive invocations with the

same input values produce the same answer.

Sometimes referred to as a not-variant function.

Contrast this with an nondeterministic function

(sometimes called a variant function), which might not

always produce the same result for the same inputs.

DFP. Data Facility Product (in z/OS).

DFSMS. Data Facility Storage Management Subsystem

(in z/OS). Also called Storage Management Subsystem

(SMS).

DFSMSdss™. The data set services (dss) component of

DFSMS (in z/OS).

DFSMShsm™. The hierarchical storage manager (hsm)

component of DFSMS (in z/OS).

dimension. A data category such as time, products, or

markets. The elements of a dimension are referred to as

members. Dimensions offer a very concise, intuitive

way of organizing and selecting data for retrieval,

exploration, and analysis. See also dimension table.

dimension table. The representation of a dimension in

a star schema. Each row in a dimension table

represents all of the attributes for a particular member

of the dimension. See also dimension, star schema, and

star join.

directory. The DB2 system database that contains

internal objects such as database descriptors and

skeleton cursor tables.

distinct predicate. In SQL, a predicate that ensures

that two row values are not equal, and that both row

values are not null.

distinct type. A user-defined data type that is

internally represented as an existing type (its source

type), but is considered to be a separate and

incompatible type for semantic purposes.

distributed data. Data that resides on a DBMS other

than the local system.

distributed data facility (DDF). A set of DB2

components through which DB2 communicates with

another relational database management system.

Distributed Relational Database Architecture™

(DRDA). A connection protocol for distributed

relational database processing that is used by IBM’s

relational database products. DRDA includes protocols

for communication between an application and a

remote relational database management system, and for

communication between relational database

management systems. See also DRDA access.

DL/I. Data Language/I.

DNS. Domain name server.

document access definition (DAD). Used to define

the indexing scheme for an XML column or the

mapping scheme of an XML collection. It can be used

to enable an XML Extender column of an XML

collection, which is XML formatted.

domain. The set of valid values for an attribute.

domain name. The name by which TCP/IP

applications refer to a TCP/IP host within a TCP/IP

network.

domain name server (DNS). A special TCP/IP

network server that manages a distributed directory

that is used to map TCP/IP host names to IP addresses.

double-byte character large object (DBCLOB). A

sequence of bytes representing double-byte characters

where the size of the values can be up to 2 GB. In

general, DBCLOB values are used whenever a

double-byte character string might exceed the limits of

the VARGRAPHIC type.

double-byte character set (DBCS). A set of characters,

which are used by national languages such as Japanese

and Chinese, that have more symbols than can be

represented by a single byte. Each character is 2 bytes

in length. Contrast with single-byte character set and

multibyte character set.

double-precision floating point number. A 64-bit

approximate representation of a real number.

downstream. The set of nodes in the syncpoint tree

that is connected to the local DBMS as a participant in

the execution of a two-phase commit.

DPSI. Data-partitioned secondary index.

drain. The act of acquiring a locked resource by

quiescing access to that object.

drain lock. A lock on a claim class that prevents a

claim from occurring.

dependent row • drain lock

346 Application Programming Guide and Reference for Java™

|
|

|
|

#
#
#

 |
 |
 |
 |
 |

 |

DRDA. Distributed Relational Database Architecture.

DRDA access. An open method of accessing

distributed data that you can use to can connect to

another database server to execute packages that were

previously bound at the server location. You use the

SQL CONNECT statement or an SQL statement with a

three-part name to identify the server. Contrast with

private protocol access.

DSN. (1) The default DB2 subsystem name. (2) The

name of the TSO command processor of DB2. (3) The

first three characters of DB2 module and macro names.

duration. A number that represents an interval of

time. See also date duration, labeled duration, and time

duration.

dynamic cursor. A named control structure that an

application program uses to change the size of the

result table and the order of its rows after the cursor is

opened. Contrast with static cursor.

dynamic dump. A dump that is issued during the

execution of a program, usually under the control of

that program.

dynamic SQL. SQL statements that are prepared and

executed within an application program while the

program is executing. In dynamic SQL, the SQL source

is contained in host language variables rather than

being coded into the application program. The SQL

statement can change several times during the

application program’s execution.

dynamic statement cache pool. A cache, located above

the 2-GB storage line, that holds dynamic statements.

E

EA-enabled table space. A table space or index space

that is enabled for extended addressability and that

contains individual partitions (or pieces, for LOB table

spaces) that are greater than 4 GB.

EB. See exabyte.

EBCDIC. Extended binary coded decimal interchange

code. An encoding scheme that is used to represent

character data in the z/OS, VM, VSE, and iSeries™

environments. Contrast with ASCII and Unicode.

e-business. The transformation of key business

processes through the use of Internet technologies.

EDM pool. A pool of main storage that is used for

database descriptors, application plans, authorization

cache, application packages.

EID. Event identifier.

embedded SQL. SQL statements that are coded within

an application program. See static SQL.

enclave. In Language Environment , an independent

collection of routines, one of which is designated as the

main routine. An enclave is similar to a program or run

unit.

encoding scheme. A set of rules to represent character

data (ASCII, EBCDIC, or Unicode).

entity. A significant object of interest to an

organization.

enumerated list. A set of DB2 objects that are defined

with a LISTDEF utility control statement in which

pattern-matching characters (*, %, _ or ?) are not used.

environment. A collection of names of logical and

physical resources that are used to support the

performance of a function.

environment handle. In DB2 ODBC, the data object

that contains global information regarding the state of

the application. An environment handle must be

allocated before a connection handle can be allocated.

Only one environment handle can be allocated per

application.

EOM. End of memory.

EOT. End of task.

equijoin. A join operation in which the join-condition

has the form expression = expression.

error page range. A range of pages that are considered

to be physically damaged. DB2 does not allow users to

access any pages that fall within this range.

escape character. The symbol that is used to enclose

an SQL delimited identifier. The escape character is the

double quotation mark ("), except in COBOL

applications, where the user assigns the symbol, which

is either a double quotation mark or an apostrophe (').

ESDS. Entry sequenced data set.

ESMT. External subsystem module table (in IMS).

EUR. IBM European Standards.

exabyte. For processor, real and virtual storage

capacities and channel volume:

1 152 921 504 606 846 976 bytes or 260.

exception table. A table that holds rows that violate

referential constraints or check constraints that the

CHECK DATA utility finds.

exclusive lock. A lock that prevents concurrently

executing application processes from reading or

changing data. Contrast with share lock.

executable statement. An SQL statement that can be

embedded in an application program, dynamically

prepared and executed, or issued interactively.

DRDA • executable statement

Glossary 347

|
|
|
|

|
|

|

|
|
|

 |
 |
 |

execution context. In SQLJ, a Java object that can be

used to control the execution of SQL statements.

exit routine. A user-written (or IBM-provided default)

program that receives control from DB2 to perform

specific functions. Exit routines run as extensions of

DB2.

expanding conversion. A process that occurs when

the length of a converted string is greater than that of

the source string. For example, this process occurs

when an ASCII mixed-data string that contains DBCS

characters is converted to an EBCDIC mixed-data

string; the converted string is longer because of the

addition of shift codes.

explicit hierarchical locking. Locking that is used to

make the parent-child relationship between resources

known to IRLM. This kind of locking avoids global

locking overhead when no inter-DB2 interest exists on a

resource.

exposed name. A correlation name or a table or view

name for which a correlation name is not specified.

Names that are specified in a FROM clause are exposed

or non-exposed.

expression. An operand or a collection of operators

and operands that yields a single value.

extended recovery facility (XRF). A facility that

minimizes the effect of failures in z/OS, VTAM , the

host processor, or high-availability applications during

sessions between high-availability applications and

designated terminals. This facility provides an

alternative subsystem to take over sessions from the

failing subsystem.

Extensible Markup Language (XML). A standard

metalanguage for defining markup languages that is a

subset of Standardized General Markup Language

(SGML). The less complex nature of XML makes it

easier to write applications that handle document

types, to author and manage structured information,

and to transmit and share structured information across

diverse computing environments.

external function. A function for which the body is

written in a programming language that takes scalar

argument values and produces a scalar result for each

invocation. Contrast with sourced function, built-in

function, and SQL function.

external procedure. A user-written application

program that can be invoked with the SQL CALL

statement, which is written in a programming

language. Contrast with SQL procedure.

external routine. A user-defined function or stored

procedure that is based on code that is written in an

external programming language.

external subsystem module table (ESMT). In IMS, the

table that specifies which attachment modules must be

loaded.

F

failed member state. A state of a member of a data

sharing group. When a member fails, the XCF

permanently records the failed member state. This state

usually means that the member’s task, address space,

or z/OS system terminated before the state changed

from active to quiesced.

fallback. The process of returning to a previous

release of DB2 after attempting or completing migration

to a current release.

false global lock contention. A contention indication

from the coupling facility when multiple lock names

are hashed to the same indicator and when no real

contention exists.

fan set. A direct physical access path to data, which is

provided by an index, hash, or link; a fan set is the

means by which the data manager supports the

ordering of data.

federated database. The combination of a DB2

Universal Database server (in Linux, UNIX®, and

Windows® environments) and multiple data sources to

which the server sends queries. In a federated database

system, a client application can use a single SQL

statement to join data that is distributed across multiple

database management systems and can view the data

as if it were local.

fetch orientation. The specification of the desired

placement of the cursor as part of a FETCH statement

(for example, BEFORE, AFTER, NEXT, PRIOR,

CURRENT, FIRST, LAST, ABSOLUTE, and RELATIVE).

field procedure. A user-written exit routine that is

designed to receive a single value and transform

(encode or decode) it in any way the user can specify.

filter factor. A number between zero and one that

estimates the proportion of rows in a table for which a

predicate is true.

fixed-length string. A character or graphic string

whose length is specified and cannot be changed.

Contrast with varying-length string.

FlashCopy. A function on the IBM Enterprise Storage

Server® that can create a point-in-time copy of data

while an application is running.

foreign key. A column or set of columns in a

dependent table of a constraint relationship. The key

must have the same number of columns, with the same

descriptions, as the primary key of the parent table.

execution context • foreign key

348 Application Programming Guide and Reference for Java™

Each foreign key value must either match a parent key

value in the related parent table or be null.

forest. An ordered set of subtrees of XML nodes.

forget. In a two-phase commit operation, (1) the vote

that is sent to the prepare phase when the participant

has not modified any data. The forget vote allows a

participant to release locks and forget about the logical

unit of work. This is also referred to as the read-only

vote. (2) The response to the committed request in the

second phase of the operation.

forward log recovery. The third phase of restart

processing during which DB2 processes the log in a

forward direction to apply all REDO log records.

free space. The total amount of unused space in a

page; that is, the space that is not used to store records

or control information is free space.

full outer join. The result of a join operation that

includes the matched rows of both tables that are being

joined and preserves the unmatched rows of both

tables. See also join.

fullselect. A subselect, a values-clause, or a number of

both that are combined by set operators. Fullselect

specifies a result table. If UNION is not used, the result

of the fullselect is the result of the specified subselect.

fully escaped mapping. A mapping from an SQL

identifier to an XML name when the SQL identifier is a

column name.

function. A mapping, which is embodied as a

program (the function body) that is invocable by means

of zero or more input values (arguments) to a single

value (the result). See also aggregate function and scalar

function.

 Functions can be user-defined, built-in, or generated by

DB2. (See also built-in function, cast function, external

function, sourced function, SQL function, and user-defined

function.)

function definer. The authorization ID of the owner

of the schema of the function that is specified in the

CREATE FUNCTION statement.

function implementer. The authorization ID of the

owner of the function program and function package.

function package. A package that results from binding

the DBRM for a function program.

function package owner. The authorization ID of the

user who binds the function program’s DBRM into a

function package.

function resolution. The process, internal to the

DBMS, by which a function invocation is bound to a

particular function instance. This process uses the

function name, the data types of the arguments, and a

list of the applicable schema names (called the SQL

path) to make the selection. This process is sometimes

called function selection.

function selection. See function resolution.

function signature. The logical concatenation of a

fully qualified function name with the data types of all

of its parameters.

G

GB. Gigabyte (1 073 741 824 bytes).

GBP. Group buffer pool.

GBP-dependent. The status of a page set or page set

partition that is dependent on the group buffer pool.

Either read/write interest is active among DB2

subsystems for this page set, or the page set has

changed pages in the group buffer pool that have not

yet been cast out to disk.

generalized trace facility (GTF). A z/OS service

program that records significant system events such as

I/O interrupts, SVC interrupts, program interrupts, or

external interrupts.

generic resource name. A name that VTAM uses to

represent several application programs that provide the

same function in order to handle session distribution

and balancing in a Sysplex environment.

getpage. An operation in which DB2 accesses a data

page.

global lock. A lock that provides concurrency control

within and among DB2 subsystems. The scope of the

lock is across all DB2 subsystems of a data sharing

group.

global lock contention. Conflicts on locking requests

between different DB2 members of a data sharing

group when those members are trying to serialize

shared resources.

governor. See resource limit facility.

graphic string. A sequence of DBCS characters.

gross lock. The shared, update, or exclusive mode locks

on a table, partition, or table space.

group buffer pool (GBP). A coupling facility cache

structure that is used by a data sharing group to cache

data and to ensure that the data is consistent for all

members.

group buffer pool duplexing. The ability to write

data to two instances of a group buffer pool structure: a

primary group buffer pool and a secondary group buffer

forest • group buffer pool duplexing

Glossary 349

|

|
|
|

#
#
#
#
#

#
#
#
#

pool. z/OS publications refer to these instances as the

"old" (for primary) and "new" (for secondary)

structures.

group level. The release level of a data sharing group,

which is established when the first member migrates to

a new release.

group name. The z/OS XCF identifier for a data

sharing group.

group restart. A restart of at least one member of a

data sharing group after the loss of either locks or the

shared communications area.

GTF. Generalized trace facility.

H

handle. In DB2 ODBC, a variable that refers to a data

structure and associated resources. See also statement

handle, connection handle, and environment handle.

help panel. A screen of information that presents

tutorial text to assist a user at the workstation or

terminal.

heuristic damage. The inconsistency in data between

one or more participants that results when a heuristic

decision to resolve an indoubt LUW at one or more

participants differs from the decision that is recorded at

the coordinator.

heuristic decision. A decision that forces indoubt

resolution at a participant by means other than

automatic resynchronization between coordinator and

participant.

hole. A row of the result table that cannot be accessed

because of a delete or an update that has been

performed on the row. See also delete hole and update

hole.

home address space. The area of storage that z/OS

currently recognizes as dispatched.

host. The set of programs and resources that are

available on a given TCP/IP instance.

host expression. A Java variable or expression that is

referenced by SQL clauses in an SQLJ application

program.

host identifier. A name that is declared in the host

program.

host language. A programming language in which

you can embed SQL statements.

host program. An application program that is written

in a host language and that contains embedded SQL

statements.

host structure. In an application program, a structure

that is referenced by embedded SQL statements.

host variable. In an application program, an

application variable that is referenced by embedded

SQL statements.

host variable array. An array of elements, each of

which corresponds to a value for a column. The

dimension of the array determines the maximum

number of rows for which the array can be used.

HSM. Hierarchical storage manager.

HTML. Hypertext Markup Language, a standard

method for presenting Web data to users.

HTTP. Hypertext Transfer Protocol, a communication

protocol that the Web uses.

I

ICF. Integrated catalog facility.

IDCAMS. An IBM program that is used to process

access method services commands. It can be invoked as

a job or jobstep, from a TSO terminal, or from within a

user’s application program.

IDCAMS LISTCAT. A facility for obtaining

information that is contained in the access method

services catalog.

identify. A request that an attachment service

program in an address space that is separate from DB2

issues thorough the z/OS subsystem interface to inform

DB2 of its existence and to initiate the process of

becoming connected to DB2.

identity column. A column that provides a way for

DB2 to automatically generate a numeric value for each

row. The generated values are unique if cycling is not

used. Identity columns are defined with the AS

IDENTITY clause. Uniqueness of values can be ensured

by defining a unique index that contains only the

identity column. A table can have no more than one

identity column.

IFCID. Instrumentation facility component identifier.

IFI. Instrumentation facility interface.

IFI call. An invocation of the instrumentation facility

interface (IFI) by means of one of its defined functions.

IFP. IMS Fast Path.

image copy. An exact reproduction of all or part of a

table space. DB2 provides utility programs to make full

image copies (to copy the entire table space) or

incremental image copies (to copy only those pages

that have been modified since the last image copy).

group level • image copy

350 Application Programming Guide and Reference for Java™

|
|
|
|

 |
 |
 |
 |

implied forget. In the presumed-abort protocol, an

implied response of forget to the second-phase

committed request from the coordinator. The response is

implied when the participant responds to any

subsequent request from the coordinator.

IMS. Information Management System.

IMS attachment facility. A DB2 subcomponent that

uses z/OS subsystem interface (SSI) protocols and

cross-memory linkage to process requests from IMS to

DB2 and to coordinate resource commitment.

IMS DB. Information Management System Database.

IMS TM. Information Management System

Transaction Manager.

in-abort. A status of a unit of recovery. If DB2 fails

after a unit of recovery begins to be rolled back, but

before the process is completed, DB2 continues to back

out the changes during restart.

in-commit. A status of a unit of recovery. If DB2 fails

after beginning its phase 2 commit processing, it

"knows," when restarted, that changes made to data are

consistent. Such units of recovery are termed in-commit.

independent. An object (row, table, or table space)

that is neither a parent nor a dependent of another

object.

index. A set of pointers that are logically ordered by

the values of a key. Indexes can provide faster access to

data and can enforce uniqueness on the rows in a table.

index-controlled partitioning. A type of partitioning

in which partition boundaries for a partitioned table are

controlled by values that are specified on the CREATE

INDEX statement. Partition limits are saved in the

LIMITKEY column of the SYSIBM.SYSINDEXPART

catalog table.

index key. The set of columns in a table that is used

to determine the order of index entries.

index partition. A VSAM data set that is contained

within a partitioning index space.

index space. A page set that is used to store the

entries of one index.

indicator column. A 4-byte value that is stored in a

base table in place of a LOB column.

indicator variable. A variable that is used to represent

the null value in an application program. If the value

for the selected column is null, a negative value is

placed in the indicator variable.

indoubt. A status of a unit of recovery. If DB2 fails

after it has finished its phase 1 commit processing and

before it has started phase 2, only the commit

coordinator knows if an individual unit of recovery is

to be committed or rolled back. At emergency restart, if

DB2 lacks the information it needs to make this

decision, the status of the unit of recovery is indoubt

until DB2 obtains this information from the coordinator.

More than one unit of recovery can be indoubt at

restart.

indoubt resolution. The process of resolving the

status of an indoubt logical unit of work to either the

committed or the rollback state.

inflight. A status of a unit of recovery. If DB2 fails

before its unit of recovery completes phase 1 of the

commit process, it merely backs out the updates of its

unit of recovery at restart. These units of recovery are

termed inflight.

inheritance. The passing downstream of class

resources or attributes from a parent class in the class

hierarchy to a child class.

initialization file. For DB2 ODBC applications, a file

containing values that can be set to adjust the

performance of the database manager.

inline copy. A copy that is produced by the LOAD or

REORG utility. The data set that the inline copy

produces is logically equivalent to a full image copy

that is produced by running the COPY utility with

read-only access (SHRLEVEL REFERENCE).

inner join. The result of a join operation that includes

only the matched rows of both tables that are being

joined. See also join.

inoperative package. A package that cannot be used

because one or more user-defined functions or

procedures that the package depends on were dropped.

Such a package must be explicitly rebound. Contrast

with invalid package.

insensitive cursor. A cursor that is not sensitive to

inserts, updates, or deletes that are made to the

underlying rows of a result table after the result table

has been materialized.

insert trigger. A trigger that is defined with the

triggering SQL operation INSERT.

install. The process of preparing a DB2 subsystem to

operate as a z/OS subsystem.

installation verification scenario. A sequence of

operations that exercises the main DB2 functions and

tests whether DB2 was correctly installed.

instrumentation facility component identifier

(IFCID). A value that names and identifies a trace

record of an event that can be traced. As a parameter

on the START TRACE and MODIFY TRACE

commands, it specifies that the corresponding event is

to be traced.

implied forget • instrumentation facility component identifier (IFCID)

Glossary 351

|
|
|
|
|
|
 |
 |
 |
 |

instrumentation facility interface (IFI). A

programming interface that enables programs to obtain

online trace data about DB2, to submit DB2 commands,

and to pass data to DB2.

Interactive System Productivity Facility (ISPF). An

IBM licensed program that provides interactive dialog

services in a z/OS environment.

inter-DB2 R/W interest. A property of data in a table

space, index, or partition that has been opened by more

than one member of a data sharing group and that has

been opened for writing by at least one of those

members.

intermediate database server. The target of a request

from a local application or a remote application

requester that is forwarded to another database server.

In the DB2 environment, the remote request is

forwarded transparently to another database server if

the object that is referenced by a three-part name does

not reference the local location.

internationalization. The support for an encoding

scheme that is able to represent the code points of

characters from many different geographies and

languages. To support all geographies, the Unicode

standard requires more than 1 byte to represent a single

character. See also Unicode.

internal resource lock manager (IRLM). A z/OS

subsystem that DB2 uses to control communication and

database locking.

International Organization for Standardization. An

international body charged with creating standards to

facilitate the exchange of goods and services as well as

cooperation in intellectual, scientific, technological, and

economic activity.

invalid package. A package that depends on an object

(other than a user-defined function) that is dropped.

Such a package is implicitly rebound on invocation.

Contrast with inoperative package.

invariant character set. (1) A character set, such as the

syntactic character set, whose code point assignments

do not change from code page to code page. (2) A

minimum set of characters that is available as part of

all character sets.

IP address. A 4-byte value that uniquely identifies a

TCP/IP host.

IRLM. Internal resource lock manager.

ISO. International Organization for Standardization.

isolation level. The degree to which a unit of work is

isolated from the updating operations of other units of

work. See also cursor stability, read stability, repeatable

read, and uncommitted read.

ISPF. Interactive System Productivity Facility.

ISPF/PDF. Interactive System Productivity

Facility/Program Development Facility.

iterator. In SQLJ, an object that contains the result set

of a query. An iterator is equivalent to a cursor in other

host languages.

iterator declaration clause. In SQLJ, a statement that

generates an iterator declaration class. An iterator is an

object of an iterator declaration class.

J

Japanese Industrial Standard. An encoding scheme

that is used to process Japanese characters.

JAR. Java Archive.

Java Archive (JAR). A file format that is used for

aggregating many files into a single file.

JCL. Job control language.

JDBC. A Sun Microsystems database application

programming interface (API) for Java that allows

programs to access database management systems by

using callable SQL. JDBC does not require the use of an

SQL preprocessor. In addition, JDBC provides an

architecture that lets users add modules called database

drivers, which link the application to their choice of

database management systems at run time.

JES. Job Entry Subsystem.

JIS. Japanese Industrial Standard.

job control language (JCL). A control language that is

used to identify a job to an operating system and to

describe the job’s requirements.

Job Entry Subsystem (JES). An IBM licensed program

that receives jobs into the system and processes all

output data that is produced by the jobs.

join. A relational operation that allows retrieval of

data from two or more tables based on matching

column values. See also equijoin, full outer join, inner

join, left outer join, outer join, and right outer join.

K

KB. Kilobyte (1024 bytes).

Kerberos. A network authentication protocol that is

designed to provide strong authentication for

client/server applications by using secret-key

cryptography.

Kerberos ticket. A transparent application mechanism

that transmits the identity of an initiating principal to

its target. A simple ticket contains the principal’s

instrumentation facility interface (IFI) • Kerberos ticket

352 Application Programming Guide and Reference for Java™

|
|
|
|
|

 |
 |

 |

identity, a session key, a timestamp, and other

information, which is sealed using the target’s secret

key.

key. A column or an ordered collection of columns

that is identified in the description of a table, index, or

referential constraint. The same column can be part of

more than one key.

key-sequenced data set (KSDS). A VSAM file or data

set whose records are loaded in key sequence and

controlled by an index.

keyword. In SQL, a name that identifies an option

that is used in an SQL statement.

KSDS. Key-sequenced data set.

L

labeled duration. A number that represents a duration

of years, months, days, hours, minutes, seconds, or

microseconds.

large object (LOB). A sequence of bytes representing

bit data, single-byte characters, double-byte characters,

or a mixture of single- and double-byte characters. A

LOB can be up to 2 GB−1 byte in length. See also

BLOB, CLOB, and DBCLOB.

last agent optimization. An optimized commit flow

for either presumed-nothing or presumed-abort

protocols in which the last agent, or final participant,

becomes the commit coordinator. This flow saves at

least one message.

latch. A DB2 internal mechanism for controlling

concurrent events or the use of system resources.

LCID. Log control interval definition.

LDS. Linear data set.

leaf page. A page that contains pairs of keys and RIDs

and that points to actual data. Contrast with nonleaf

page.

left outer join. The result of a join operation that

includes the matched rows of both tables that are being

joined, and that preserves the unmatched rows of the

first table. See also join.

limit key. The highest value of the index key for a

partition.

linear data set (LDS). A VSAM data set that contains

data but no control information. A linear data set can

be accessed as a byte-addressable string in virtual

storage.

linkage editor. A computer program for creating load

modules from one or more object modules or load

modules by resolving cross references among the

modules and, if necessary, adjusting addresses.

link-edit. The action of creating a loadable computer

program using a linkage editor.

list. A type of object, which DB2 utilities can process,

that identifies multiple table spaces, multiple index

spaces, or both. A list is defined with the LISTDEF

utility control statement.

list structure. A coupling facility structure that lets

data be shared and manipulated as elements of a

queue.

LLE. Load list element.

L-lock. Logical lock.

load list element. A z/OS control block that controls

the loading and deleting of a particular load module

based on entry point names.

load module. A program unit that is suitable for

loading into main storage for execution. The output of

a linkage editor.

LOB. Large object.

LOB locator. A mechanism that allows an application

program to manipulate a large object value in the

database system. A LOB locator is a fullword integer

value that represents a single LOB value. An

application program retrieves a LOB locator into a host

variable and can then apply SQL operations to the

associated LOB value using the locator.

LOB lock. A lock on a LOB value.

LOB table space. A table space in an auxiliary table

that contains all the data for a particular LOB column

in the related base table.

local. A way of referring to any object that the local

DB2 subsystem maintains. A local table, for example, is

a table that is maintained by the local DB2 subsystem.

Contrast with remote.

locale. The definition of a subset of a user’s

environment that combines a CCSID and characters

that are defined for a specific language and country.

local lock. A lock that provides intra-DB2 concurrency

control, but not inter-DB2 concurrency control; that is,

its scope is a single DB2.

local subsystem. The unique relational DBMS to

which the user or application program is directly

connected (in the case of DB2, by one of the DB2

attachment facilities).

location. The unique name of a database server. An

application uses the location name to access a DB2

key • location

Glossary 353

 |
 |
 |

 |
 |

database server. A database alias can be used to

override the location name when accessing a remote

server.

location alias. Another name by which a database

server identifies itself in the network. Applications can

use this name to access a DB2 database server.

lock. A means of controlling concurrent events or

access to data. DB2 locking is performed by the IRLM.

lock duration. The interval over which a DB2 lock is

held.

lock escalation. The promotion of a lock from a row,

page, or LOB lock to a table space lock because the

number of page locks that are concurrently held on a

given resource exceeds a preset limit.

locking. The process by which the integrity of data is

ensured. Locking prevents concurrent users from

accessing inconsistent data.

lock mode. A representation for the type of access that

concurrently running programs can have to a resource

that a DB2 lock is holding.

lock object. The resource that is controlled by a DB2

lock.

lock promotion. The process of changing the size or

mode of a DB2 lock to a higher, more restrictive level.

lock size. The amount of data that is controlled by a

DB2 lock on table data; the value can be a row, a page,

a LOB, a partition, a table, or a table space.

lock structure. A coupling facility data structure that

is composed of a series of lock entries to support

shared and exclusive locking for logical resources.

log. A collection of records that describe the events

that occur during DB2 execution and that indicate their

sequence. The information thus recorded is used for

recovery in the event of a failure during DB2 execution.

log control interval definition. A suffix of the

physical log record that tells how record segments are

placed in the physical control interval.

logical claim. A claim on a logical partition of a

nonpartitioning index.

logical data modeling. The process of documenting

the comprehensive business information requirements

in an accurate and consistent format. Data modeling is

the first task of designing a database.

logical drain. A drain on a logical partition of a

nonpartitioning index.

logical index partition. The set of all keys that

reference the same data partition.

logical lock (L-lock). The lock type that transactions

use to control intra- and inter-DB2 data concurrency

between transactions. Contrast with physical lock

(P-lock).

logically complete. A state in which the concurrent

copy process is finished with the initialization of the

target objects that are being copied. The target objects

are available for update.

logical page list (LPL). A list of pages that are in error

and that cannot be referenced by applications until the

pages are recovered. The page is in logical error because

the actual media (coupling facility or disk) might not

contain any errors. Usually a connection to the media

has been lost.

logical partition. A set of key or RID pairs in a

nonpartitioning index that are associated with a

particular partition.

logical recovery pending (LRECP). The state in which

the data and the index keys that reference the data are

inconsistent.

logical unit (LU). An access point through which an

application program accesses the SNA network in order

to communicate with another application program.

logical unit of work (LUW). The processing that a

program performs between synchronization points.

logical unit of work identifier (LUWID). A name that

uniquely identifies a thread within a network. This

name consists of a fully-qualified LU network name, an

LUW instance number, and an LUW sequence number.

log initialization. The first phase of restart processing

during which DB2 attempts to locate the current end of

the log.

log record header (LRH). A prefix, in every logical

record, that contains control information.

log record sequence number (LRSN). A unique

identifier for a log record that is associated with a data

sharing member. DB2 uses the LRSN for recovery in

the data sharing environment.

log truncation. A process by which an explicit starting

RBA is established. This RBA is the point at which the

next byte of log data is to be written.

LPL. Logical page list.

LRECP. Logical recovery pending.

LRH. Log record header.

LRSN. Log record sequence number.

LU. Logical unit.

location alias • LU

354 Application Programming Guide and Reference for Java™

|
|
|

|
|
|

|
|
|

LU name. Logical unit name, which is the name by

which VTAM refers to a node in a network. Contrast

with location name.

LUW. Logical unit of work.

LUWID. Logical unit of work identifier.

M

mapping table. A table that the REORG utility uses to

map the associations of the RIDs of data records in the

original copy and in the shadow copy. This table is

created by the user.

mass delete. The deletion of all rows of a table.

master terminal. The IMS logical terminal that has

complete control of IMS resources during online

operations.

master terminal operator (MTO). See master terminal.

materialize. (1) The process of putting rows from a

view or nested table expression into a work file for

additional processing by a query.

 (2) The placement of a LOB value into contiguous

storage. Because LOB values can be very large, DB2

avoids materializing LOB data until doing so becomes

absolutely necessary.

materialized query table. A table that is used to

contain information that is derived and can be

summarized from one or more source tables.

MB. Megabyte (1 048 576 bytes).

MBCS. Multibyte character set. UTF-8 is an example

of an MBCS. Characters in UTF-8 can range from 1 to 4

bytes in DB2.

member name. The z/OS XCF identifier for a

particular DB2 subsystem in a data sharing group.

menu. A displayed list of available functions for

selection by the operator. A menu is sometimes called a

menu panel.

metalanguage. A language that is used to create other

specialized languages.

migration. The process of converting a subsystem

with a previous release of DB2 to an updated or

current release. In this process, you can acquire the

functions of the updated or current release without

losing the data that you created on the previous

release.

mixed data string. A character string that can contain

both single-byte and double-byte characters.

MLPA. Modified link pack area.

MODEENT. A VTAM macro instruction that

associates a logon mode name with a set of parameters

representing session protocols. A set of MODEENT

macro instructions defines a logon mode table.

modeling database. A DB2 database that you create

on your workstation that you use to model a DB2 UDB

for z/OS subsystem, which can then be evaluated by

the Index Advisor.

mode name. A VTAM name for the collection of

physical and logical characteristics and attributes of a

session.

modify locks. An L-lock or P-lock with a MODIFY

attribute. A list of these active locks is kept at all times

in the coupling facility lock structure. If the requesting

DB2 subsystem fails, that DB2 subsystem’s modify

locks are converted to retained locks.

MPP. Message processing program (in IMS).

MTO. Master terminal operator.

multibyte character set (MBCS). A character set that

represents single characters with more than a single

byte. Contrast with single-byte character set and

double-byte character set. See also Unicode.

multidimensional analysis. The process of assessing

and evaluating an enterprise on more than one level.

Multiple Virtual Storage. An element of the z/OS

operating system. This element is also called the Base

Control Program (BCP).

multisite update. Distributed relational database

processing in which data is updated in more than one

location within a single unit of work.

multithreading. Multiple TCBs that are executing one

copy of DB2 ODBC code concurrently (sharing a

processor) or in parallel (on separate central

processors).

must-complete. A state during DB2 processing in

which the entire operation must be completed to

maintain data integrity.

mutex. Pthread mutual exclusion; a lock. A Pthread

mutex variable is used as a locking mechanism to allow

serialization of critical sections of code by temporarily

blocking the execution of all but one thread.

MVS. See Multiple Virtual Storage.

N

negotiable lock. A lock whose mode can be

downgraded, by agreement among contending users, to

be compatible to all. A physical lock is an example of a

negotiable lock.

LU name • negotiable lock

Glossary 355

|
|
|

|
|

 |

nested table expression. A fullselect in a FROM clause

(surrounded by parentheses).

network identifier (NID). The network ID that is

assigned by IMS or CICS, or if the connection type is

RRSAF, the RRS unit of recovery ID (URID).

NID. Network identifier.

nonleaf page. A page that contains keys and page

numbers of other pages in the index (either leaf or

nonleaf pages). Nonleaf pages never point to actual

data.

nonpartitioned index. An index that is not physically

partitioned. Both partitioning indexes and secondary

indexes can be nonpartitioned.

nonscrollable cursor. A cursor that can be moved

only in a forward direction. Nonscrollable cursors are

sometimes called forward-only cursors or serial cursors.

normalization. A key step in the task of building a

logical relational database design. Normalization helps

you avoid redundancies and inconsistencies in your

data. An entity is normalized if it meets a set of

constraints for a particular normal form (first normal

form, second normal form, and so on). Contrast with

denormalization.

nondeterministic function. A user-defined function

whose result is not solely dependent on the values of

the input arguments. That is, successive invocations

with the same argument values can produce a different

answer. this type of function is sometimes called a

variant function. Contrast this with a deterministic

function (sometimes called a not-variant function), which

always produces the same result for the same inputs.

not-variant function. See deterministic function.

NPSI. See nonpartitioned secondary index.

NRE. Network recovery element.

NUL. The null character (’\0’), which is represented

by the value X'00'. In C, this character denotes the end

of a string.

null. A special value that indicates the absence of

information.

NULLIF. A scalar function that evaluates two passed

expressions, returning either NULL if the arguments

are equal or the value of the first argument if they are

not.

null-terminated host variable. A varying-length host

variable in which the end of the data is indicated by a

null terminator.

null terminator. In C, the value that indicates the end

of a string. For EBCDIC, ASCII, and Unicode UTF-8

strings, the null terminator is a single-byte value (X'00').

For Unicode UCS-2 (wide) strings, the null terminator

is a double-byte value (X'0000').

O

OASN (origin application schedule number). In IMS,

a 4-byte number that is assigned sequentially to each

IMS schedule since the last cold start of IMS. The

OASN is used as an identifier for a unit of work. In an

8-byte format, the first 4 bytes contain the schedule

number and the last 4 bytes contain the number of IMS

sync points (commit points) during the current schedule.

The OASN is part of the NID for an IMS connection.

ODBC. Open Database Connectivity.

ODBC driver. A dynamically-linked library (DLL) that

implements ODBC function calls and interacts with a

data source.

OBID. Data object identifier.

Open Database Connectivity (ODBC). A Microsoft®

database application programming interface (API) for C

that allows access to database management systems by

using callable SQL. ODBC does not require the use of

an SQL preprocessor. In addition, ODBC provides an

architecture that lets users add modules called database

drivers, which link the application to their choice of

database management systems at run time. This means

that applications no longer need to be directly linked to

the modules of all the database management systems

that are supported.

ordinary identifier. An uppercase letter followed by

zero or more characters, each of which is an uppercase

letter, a digit, or the underscore character. An ordinary

identifier must not be a reserved word.

ordinary token. A numeric constant, an ordinary

identifier, a host identifier, or a keyword.

originating task. In a parallel group, the primary

agent that receives data from other execution units

(referred to as parallel tasks) that are executing portions

of the query in parallel.

OS/390. Operating System/390®.

outer join. The result of a join operation that includes

the matched rows of both tables that are being joined

and preserves some or all of the unmatched rows of the

tables that are being joined. See also join.

overloaded function. A function name for which

multiple function instances exist.

nested table expression • overloaded function

356 Application Programming Guide and Reference for Java™

|
|
|

|

P

package. An object containing a set of SQL statements

that have been statically bound and that is available for

processing. A package is sometimes also called an

application package.

package list. An ordered list of package names that

may be used to extend an application plan.

package name. The name of an object that is created

by a BIND PACKAGE or REBIND PACKAGE

command. The object is a bound version of a database

request module (DBRM). The name consists of a

location name, a collection ID, a package ID, and a

version ID.

page. A unit of storage within a table space (4 KB, 8

KB, 16 KB, or 32 KB) or index space (4 KB). In a table

space, a page contains one or more rows of a table. In a

LOB table space, a LOB value can span more than one

page, but no more than one LOB value is stored on a

page.

page set. Another way to refer to a table space or

index space. Each page set consists of a collection of

VSAM data sets.

page set recovery pending (PSRCP). A restrictive

state of an index space. In this case, the entire page set

must be recovered. Recovery of a logical part is

prohibited.

panel. A predefined display image that defines the

locations and characteristics of display fields on a

display surface (for example, a menu panel).

parallel complex. A cluster of machines that work

together to handle multiple transactions and

applications.

parallel group. A set of consecutive operations that

execute in parallel and that have the same number of

parallel tasks.

parallel I/O processing. A form of I/O processing in

which DB2 initiates multiple concurrent requests for a

single user query and performs I/O processing

concurrently (in parallel) on multiple data partitions.

parallelism assistant. In Sysplex query parallelism, a

DB2 subsystem that helps to process parts of a parallel

query that originates on another DB2 subsystem in the

data sharing group.

parallelism coordinator. In Sysplex query parallelism,

the DB2 subsystem from which the parallel query

originates.

Parallel Sysplex. A set of z/OS systems that

communicate and cooperate with each other through

certain multisystem hardware components and

software services to process customer workloads.

parallel task. The execution unit that is dynamically

created to process a query in parallel. A parallel task is

implemented by a z/OS service request block.

parameter marker. A question mark (?) that appears

in a statement string of a dynamic SQL statement. The

question mark can appear where a host variable could

appear if the statement string were a static SQL

statement.

parameter-name. An SQL identifier that designates a

parameter in an SQL procedure or an SQL function.

parent key. A primary key or unique key in the

parent table of a referential constraint. The values of a

parent key determine the valid values of the foreign

key in the referential constraint.

parent lock. For explicit hierarchical locking, a lock

that is held on a resource that might have child locks

that are lower in the hierarchy. A parent lock is usually

the table space lock or the partition intent lock. See also

child lock.

parent row. A row whose primary key value is the

foreign key value of a dependent row.

parent table. A table whose primary key is referenced

by the foreign key of a dependent table.

parent table space. A table space that contains a

parent table. A table space containing a dependent of

that table is a dependent table space.

participant. An entity other than the commit

coordinator that takes part in the commit process. The

term participant is synonymous with agent in SNA.

partition. A portion of a page set. Each partition

corresponds to a single, independently extendable data

set. Partitions can be extended to a maximum size of 1,

2, or 4 GB, depending on the number of partitions in

the partitioned page set. All partitions of a given page

set have the same maximum size.

partitioned data set (PDS). A data set in disk storage

that is divided into partitions, which are called

members. Each partition can contain a program, part of

a program, or data. The term partitioned data set is

synonymous with program library.

partitioned index. An index that is physically

partitioned. Both partitioning indexes and secondary

indexes can be partitioned.

partitioned page set. A partitioned table space or an

index space. Header pages, space map pages, data

pages, and index pages reference data only within the

scope of the partition.

partitioned table space. A table space that is

subdivided into parts (based on index key range), each

of which can be processed independently by utilities.

package • partitioned table space

Glossary 357

 |
 |

 |
 |
 |
 |
 |

 |
 |
 |

partitioning index. An index in which the leftmost

columns are the partitioning columns of the table. The

index can be partitioned or nonpartitioned.

partition pruning. The removal from consideration of

inapplicable partitions through setting up predicates in

a query on a partitioned table to access only certain

partitions to satisfy the query.

partner logical unit. An access point in the SNA

network that is connected to the local DB2 subsystem

by way of a VTAM conversation.

path. See SQL path.

PCT. Program control table (in CICS).

PDS. Partitioned data set.

piece. A data set of a nonpartitioned page set.

physical claim. A claim on an entire nonpartitioning

index.

physical consistency. The state of a page that is not in

a partially changed state.

physical drain. A drain on an entire nonpartitioning

index.

physical lock (P-lock). A type of lock that DB2

acquires to provide consistency of data that is cached in

different DB2 subsystems. Physical locks are used only

in data sharing environments. Contrast with logical lock

(L-lock).

physical lock contention. Conflicting states of the

requesters for a physical lock. See also negotiable lock.

physically complete. The state in which the

concurrent copy process is completed and the output

data set has been created.

plan. See application plan.

plan allocation. The process of allocating DB2

resources to a plan in preparation for execution.

plan member. The bound copy of a DBRM that is

identified in the member clause.

plan name. The name of an application plan.

plan segmentation. The dividing of each plan into

sections. When a section is needed, it is independently

brought into the EDM pool.

P-lock. Physical lock.

PLT. Program list table (in CICS).

point of consistency. A time when all recoverable

data that an application accesses is consistent with

other data. The term point of consistency is

synonymous with sync point or commit point.

policy. See CFRM policy.

Portable Operating System Interface (POSIX). The

IEEE operating system interface standard, which

defines the Pthread standard of threading. See also

Pthread.

POSIX. Portable Operating System Interface.

postponed abort UR. A unit of recovery that was

inflight or in-abort, was interrupted by system failure

or cancellation, and did not complete backout during

restart.

PPT. (1) Processing program table (in CICS). (2)

Program properties table (in z/OS).

precision. In SQL, the total number of digits in a

decimal number (called the size in the C language). In

the C language, the number of digits to the right of the

decimal point (called the scale in SQL). The DB2 library

uses the SQL terms.

precompilation. A processing of application programs

containing SQL statements that takes place before

compilation. SQL statements are replaced with

statements that are recognized by the host language

compiler. Output from this precompilation includes

source code that can be submitted to the compiler and

the database request module (DBRM) that is input to

the bind process.

predicate. An element of a search condition that

expresses or implies a comparison operation.

prefix. A code at the beginning of a message or

record.

preformat. The process of preparing a VSAM ESDS

for DB2 use, by writing specific data patterns.

prepare. The first phase of a two-phase commit

process in which all participants are requested to

prepare for commit.

prepared SQL statement. A named object that is the

executable form of an SQL statement that has been

processed by the PREPARE statement.

presumed-abort. An optimization of the

presumed-nothing two-phase commit protocol that

reduces the number of recovery log records, the

duration of state maintenance, and the number of

messages between coordinator and participant. The

optimization also modifies the indoubt resolution

responsibility.

presumed-nothing. The standard two-phase commit

protocol that defines coordinator and participant

responsibilities, relative to logical unit of work states,

recovery logging, and indoubt resolution.

primary authorization ID. The authorization ID that

is used to identify the application process to DB2.

partitioning index • primary authorization ID

358 Application Programming Guide and Reference for Java™

|
|
|

|
|
|
|

primary group buffer pool. For a duplexed group

buffer pool, the structure that is used to maintain the

coherency of cached data. This structure is used for

page registration and cross-invalidation. The z/OS

equivalent is old structure. Compare with secondary

group buffer pool.

primary index. An index that enforces the uniqueness

of a primary key.

primary key. In a relational database, a unique,

nonnull key that is part of the definition of a table. A

table cannot be defined as a parent unless it has a

unique key or primary key.

principal. An entity that can communicate securely

with another entity. In Kerberos, principals are

represented as entries in the Kerberos registry database

and include users, servers, computers, and others.

principal name. The name by which a principal is

known to the DCE security services.

private connection. A communications connection that

is specific to DB2.

private protocol access. A method of accessing

distributed data by which you can direct a query to

another DB2 system. Contrast with DRDA access.

private protocol connection. A DB2 private connection

of the application process. See also private connection.

privilege. The capability of performing a specific

function, sometimes on a specific object. The types of

privileges are:

 explicit privileges, which have names and are held

as the result of SQL GRANT and REVOKE

statements. For example, the SELECT privilege.

 implicit privileges, which accompany the

ownership of an object, such as the privilege to drop

a synonym that one owns, or the holding of an

authority, such as the privilege of SYSADM

authority to terminate any utility job.

privilege set. For the installation SYSADM ID, the set

of all possible privileges. For any other authorization

ID, the set of all privileges that are recorded for that ID

in the DB2 catalog.

process. In DB2, the unit to which DB2 allocates

resources and locks. Sometimes called an application

process, a process involves the execution of one or more

programs. The execution of an SQL statement is always

associated with some process. The means of initiating

and terminating a process are dependent on the

environment.

program. A single, compilable collection of executable

statements in a programming language.

program temporary fix (PTF). A solution or bypass of

a problem that is diagnosed as a result of a defect in a

current unaltered release of a licensed program. An

authorized program analysis report (APAR) fix is

corrective service for an existing problem. A PTF is

preventive service for problems that might be

encountered by other users of the product. A PTF is

temporary, because a permanent fix is usually not

incorporated into the product until its next release.

protected conversation. A VTAM conversation that

supports two-phase commit flows.

PSRCP. Page set recovery pending.

PTF. Program temporary fix.

Pthread. The POSIX threading standard model for

splitting an application into subtasks. The Pthread

standard includes functions for creating threads,

terminating threads, synchronizing threads through

locking, and other thread control facilities.

Q

QMF™. Query Management Facility.

QSAM. Queued sequential access method.

query. A component of certain SQL statements that

specifies a result table.

query block. The part of a query that is represented

by one of the FROM clauses. Each FROM clause can

have multiple query blocks, depending on DB2’s

internal processing of the query.

query CP parallelism. Parallel execution of a single

query, which is accomplished by using multiple tasks.

See also Sysplex query parallelism.

query I/O parallelism. Parallel access of data, which

is accomplished by triggering multiple I/O requests

within a single query.

queued sequential access method (QSAM). An

extended version of the basic sequential access method

(BSAM). When this method is used, a queue of data

blocks is formed. Input data blocks await processing,

and output data blocks await transfer to auxiliary

storage or to an output device.

quiesce point. A point at which data is consistent as a

result of running the DB2 QUIESCE utility.

quiesced member state. A state of a member of a data

sharing group. An active member becomes quiesced

when a STOP DB2 command takes effect without a

failure. If the member’s task, address space, or z/OS

system fails before the command takes effect, the

member state is failed.

primary group buffer pool • quiesced member state

Glossary 359

R

RACF. Resource Access Control Facility, which is a

component of the z/OS Security Server.

RAMAC®. IBM family of enterprise disk storage

system products.

RBA. Relative byte address.

RCT. Resource control table (in CICS attachment

facility).

RDB. Relational database.

RDBMS. Relational database management system.

RDBNAM. Relational database name.

RDF. Record definition field.

read stability (RS). An isolation level that is similar to

repeatable read but does not completely isolate an

application process from all other concurrently

executing application processes. Under level RS, an

application that issues the same query more than once

might read additional rows that were inserted and

committed by a concurrently executing application

process.

rebind. The creation of a new application plan for an

application program that has been bound previously. If,

for example, you have added an index for a table that

your application accesses, you must rebind the

application in order to take advantage of that index.

rebuild. The process of reallocating a coupling facility

structure. For the shared communications area (SCA)

and lock structure, the structure is repopulated; for the

group buffer pool, changed pages are usually cast out

to disk, and the new structure is populated only with

changed pages that were not successfully cast out.

RECFM. Record format.

record. The storage representation of a row or other

data.

record identifier (RID). A unique identifier that DB2

uses internally to identify a row of data in a table.

Compare with row ID.

record identifier (RID) pool. An area of main storage

that is used for sorting record identifiers during

list-prefetch processing.

record length. The sum of the length of all the

columns in a table, which is the length of the data as it

is physically stored in the database. Records can be

fixed length or varying length, depending on how the

columns are defined. If all columns are fixed-length

columns, the record is a fixed-length record. If one or

more columns are varying-length columns, the record is

a varying-length column.

Recoverable Resource Manager Services attachment

facility (RRSAF). A DB2 subcomponent that uses

Resource Recovery Services to coordinate resource

commitment between DB2 and all other resource

managers that also use RRS in a z/OS system.

recovery. The process of rebuilding databases after a

system failure.

recovery log. A collection of records that describes the

events that occur during DB2 execution and indicates

their sequence. The recorded information is used for

recovery in the event of a failure during DB2 execution.

recovery manager. (1) A subcomponent that supplies

coordination services that control the interaction of DB2

resource managers during commit, abort, checkpoint,

and restart processes. The recovery manager also

supports the recovery mechanisms of other subsystems

(for example, IMS) by acting as a participant in the

other subsystem’s process for protecting data that has

reached a point of consistency. (2) A coordinator or a

participant (or both), in the execution of a two-phase

commit, that can access a recovery log that maintains

the state of the logical unit of work and names the

immediate upstream coordinator and downstream

participants.

recovery pending (RECP). A condition that prevents

SQL access to a table space that needs to be recovered.

recovery token. An identifier for an element that is

used in recovery (for example, NID or URID).

RECP. Recovery pending.

redo. A state of a unit of recovery that indicates that

changes are to be reapplied to the disk media to ensure

data integrity.

reentrant. Executable code that can reside in storage

as one shared copy for all threads. Reentrant code is

not self-modifying and provides separate storage areas

for each thread. Reentrancy is a compiler and operating

system concept, and reentrancy alone is not enough to

guarantee logically consistent results when

multithreading. See also threadsafe.

referential constraint. The requirement that nonnull

values of a designated foreign key are valid only if they

equal values of the primary key of a designated table.

referential integrity. The state of a database in which

all values of all foreign keys are valid. Maintaining

referential integrity requires the enforcement of

referential constraints on all operations that change the

data in a table on which the referential constraints are

defined.

RACF • referential integrity

360 Application Programming Guide and Reference for Java™

|
|

|
|
|

referential structure. A set of tables and relationships

that includes at least one table and, for every table in

the set, all the relationships in which that table

participates and all the tables to which it is related.

refresh age. The time duration between the current

time and the time during which a materialized query

table was last refreshed.

registry. See registry database.

registry database. A database of security information

about principals, groups, organizations, accounts, and

security policies.

relational database (RDB). A database that can be

perceived as a set of tables and manipulated in

accordance with the relational model of data.

relational database management system (RDBMS). A

collection of hardware and software that organizes and

provides access to a relational database.

relational database name (RDBNAM). A unique

identifier for an RDBMS within a network. In DB2, this

must be the value in the LOCATION column of table

SYSIBM.LOCATIONS in the CDB. DB2 publications

refer to the name of another RDBMS as a LOCATION

value or a location name.

relationship. A defined connection between the rows

of a table or the rows of two tables. A relationship is

the internal representation of a referential constraint.

relative byte address (RBA). The offset of a data

record or control interval from the beginning of the

storage space that is allocated to the data set or file to

which it belongs.

remigration. The process of returning to a current

release of DB2 following a fallback to a previous

release. This procedure constitutes another migration

process.

remote. Any object that is maintained by a remote

DB2 subsystem (that is, by a DB2 subsystem other than

the local one). A remote view, for example, is a view that

is maintained by a remote DB2 subsystem. Contrast

with local.

remote attach request. A request by a remote location

to attach to the local DB2 subsystem. Specifically, the

request that is sent is an SNA Function Management

Header 5.

remote subsystem. Any relational DBMS, except the

local subsystem, with which the user or application can

communicate. The subsystem need not be remote in

any physical sense, and might even operate on the

same processor under the same z/OS system.

reoptimization. The DB2 process of reconsidering the

access path of an SQL statement at run time; during

reoptimization, DB2 uses the values of host variables,

parameter markers, or special registers.

REORG pending (REORP). A condition that restricts

SQL access and most utility access to an object that

must be reorganized.

REORP. REORG pending.

repeatable read (RR). The isolation level that provides

maximum protection from other executing application

programs. When an application program executes with

repeatable read protection, rows that the program

references cannot be changed by other programs until

the program reaches a commit point.

repeating group. A situation in which an entity

includes multiple attributes that are inherently the

same. The presence of a repeating group violates the

requirement of first normal form. In an entity that

satisfies the requirement of first normal form, each

attribute is independent and unique in its meaning and

its name. See also normalization.

replay detection mechanism. A method that allows a

principal to detect whether a request is a valid request

from a source that can be trusted or whether an

untrustworthy entity has captured information from a

previous exchange and is replaying the information

exchange to gain access to the principal.

request commit. The vote that is submitted to the

prepare phase if the participant has modified data and

is prepared to commit or roll back.

requester. The source of a request to access data at a

remote server. In the DB2 environment, the requester

function is provided by the distributed data facility.

resource. The object of a lock or claim, which could be

a table space, an index space, a data partition, an index

partition, or a logical partition.

resource allocation. The part of plan allocation that

deals specifically with the database resources.

resource control table (RCT). A construct of the CICS

attachment facility, created by site-provided macro

parameters, that defines authorization and access

attributes for transactions or transaction groups.

resource definition online. A CICS feature that you

use to define CICS resources online without assembling

tables.

resource limit facility (RLF). A portion of DB2 code

that prevents dynamic manipulative SQL statements

from exceeding specified time limits. The resource limit

facility is sometimes called the governor.

resource limit specification table (RLST). A

site-defined table that specifies the limits to be enforced

by the resource limit facility.

referential structure • resource limit specification table (RLST)

Glossary 361

|
|
|

resource manager. (1) A function that is responsible

for managing a particular resource and that guarantees

the consistency of all updates made to recoverable

resources within a logical unit of work. The resource

that is being managed can be physical (for example,

disk or main storage) or logical (for example, a

particular type of system service). (2) A participant, in

the execution of a two-phase commit, that has

recoverable resources that could have been modified.

The resource manager has access to a recovery log so

that it can commit or roll back the effects of the logical

unit of work to the recoverable resources.

restart pending (RESTP). A restrictive state of a page

set or partition that indicates that restart (backout)

work needs to be performed on the object. All access to

the page set or partition is denied except for access by

the:

v RECOVER POSTPONED command

v Automatic online backout (which DB2 invokes after

restart if the system parameter LBACKOUT=AUTO)

RESTP. Restart pending.

result set. The set of rows that a stored procedure

returns to a client application.

result set locator. A 4-byte value that DB2 uses to

uniquely identify a query result set that a stored

procedure returns.

result table. The set of rows that are specified by a

SELECT statement.

retained lock. A MODIFY lock that a DB2 subsystem

was holding at the time of a subsystem failure. The

lock is retained in the coupling facility lock structure

across a DB2 failure.

RID. Record identifier.

RID pool. Record identifier pool.

right outer join. The result of a join operation that

includes the matched rows of both tables that are being

joined and preserves the unmatched rows of the second

join operand. See also join.

RLF. Resource limit facility.

RLST. Resource limit specification table.

RMID. Resource manager identifier.

RO. Read-only access.

rollback. The process of restoring data that was

changed by SQL statements to the state at its last

commit point. All locks are freed. Contrast with commit.

root page. The index page that is at the highest level

(or the beginning point) in an index.

routine. A term that refers to either a user-defined

function or a stored procedure.

row. The horizontal component of a table. A row

consists of a sequence of values, one for each column of

the table.

ROWID. Row identifier.

row identifier (ROWID). A value that uniquely

identifies a row. This value is stored with the row and

never changes.

row lock. A lock on a single row of data.

rowset. A set of rows for which a cursor position is

established.

rowset cursor. A cursor that is defined so that one or

more rows can be returned as a rowset for a single

FETCH statement, and the cursor is positioned on the

set of rows that is fetched.

rowset-positioned access. The ability to retrieve

multiple rows from a single FETCH statement.

row-positioned access. The ability to retrieve a single

row from a single FETCH statement.

row trigger. A trigger that is defined with the trigger

granularity FOR EACH ROW.

RRE. Residual recovery entry (in IMS).

RRSAF. Recoverable Resource Manager Services

attachment facility.

RS. Read stability.

RTT. Resource translation table.

RURE. Restart URE.

S

savepoint. A named entity that represents the state of

data and schemas at a particular point in time within a

unit of work. SQL statements exist to set a savepoint,

release a savepoint, and restore data and schemas to

the state that the savepoint represents. The restoration

of data and schemas to a savepoint is usually referred

to as rolling back to a savepoint.

SBCS. Single-byte character set.

SCA. Shared communications area.

scalar function. An SQL operation that produces a

single value from another value and is expressed as a

function name, followed by a list of arguments that are

enclosed in parentheses. Contrast with aggregate

function.

resource manager • scalar function

362 Application Programming Guide and Reference for Java™

 |
 |

 |
 |
 |
 |

 |
 |

 |
 |

 #
 #
 #
 #
 #

scale. In SQL, the number of digits to the right of the

decimal point (called the precision in the C language).

The DB2 library uses the SQL definition.

schema. (1) The organization or structure of a

database. (2) A logical grouping for user-defined

functions, distinct types, triggers, and stored

procedures. When an object of one of these types is

created, it is assigned to one schema, which is

determined by the name of the object. For example, the

following statement creates a distinct type T in schema

C:

CREATE DISTINCT TYPE C.T ...

scrollability. The ability to use a cursor to fetch in

either a forward or backward direction. The FETCH

statement supports multiple fetch orientations to

indicate the new position of the cursor. See also fetch

orientation.

scrollable cursor. A cursor that can be moved in both

a forward and a backward direction.

SDWA. System diagnostic work area.

search condition. A criterion for selecting rows from a

table. A search condition consists of one or more

predicates.

secondary authorization ID. An authorization ID that

has been associated with a primary authorization ID by

an authorization exit routine.

secondary group buffer pool. For a duplexed group

buffer pool, the structure that is used to back up

changed pages that are written to the primary group

buffer pool. No page registration or cross-invalidation

occurs using the secondary group buffer pool. The

z/OS equivalent is new structure.

secondary index. A nonpartitioning index on a

partitioned table.

section. The segment of a plan or package that

contains the executable structures for a single SQL

statement. For most SQL statements, one section in the

plan exists for each SQL statement in the source

program. However, for cursor-related statements, the

DECLARE, OPEN, FETCH, and CLOSE statements

reference the same section because they each refer to

the SELECT statement that is named in the DECLARE

CURSOR statement. SQL statements such as COMMIT,

ROLLBACK, and some SET statements do not use a

section.

segment. A group of pages that holds rows of a single

table. See also segmented table space.

segmented table space. A table space that is divided

into equal-sized groups of pages called segments.

Segments are assigned to tables so that rows of

different tables are never stored in the same segment.

self-referencing constraint. A referential constraint

that defines a relationship in which a table is a

dependent of itself.

self-referencing table. A table with a self-referencing

constraint.

sensitive cursor. A cursor that is sensitive to changes

that are made to the database after the result table has

been materialized.

sequence. A user-defined object that generates a

sequence of numeric values according to user

specifications.

sequential data set. A non-DB2 data set whose

records are organized on the basis of their successive

physical positions, such as on magnetic tape. Several of

the DB2 database utilities require sequential data sets.

sequential prefetch. A mechanism that triggers

consecutive asynchronous I/O operations. Pages are

fetched before they are required, and several pages are

read with a single I/O operation.

serial cursor. A cursor that can be moved only in a

forward direction.

serialized profile. A Java object that contains SQL

statements and descriptions of host variables. The SQLJ

translator produces a serialized profile for each

connection context.

server. The target of a request from a remote

requester. In the DB2 environment, the server function

is provided by the distributed data facility, which is

used to access DB2 data from remote applications.

server-side programming. A method for adding DB2

data into dynamic Web pages.

service class. An eight-character identifier that is used

by the z/OS Workload Manager to associate user

performance goals with a particular DDF thread or

stored procedure. A service class is also used to classify

work on parallelism assistants.

service request block. A unit of work that is

scheduled to execute in another address space.

session. A link between two nodes in a VTAM

network.

session protocols. The available set of SNA

communication requests and responses.

shared communications area (SCA). A coupling

facility list structure that a DB2 data sharing group uses

for inter-DB2 communication.

share lock. A lock that prevents concurrently

executing application processes from changing data,

but not from reading data. Contrast with exclusive lock.

scale • share lock

Glossary 363

|
|
|
|
|
|
|
|

|

|

|
|

 |
 |
 |

 |
 |
 |

shift-in character. A special control character (X'0F')

that is used in EBCDIC systems to denote that the

subsequent bytes represent SBCS characters. See also

shift-out character.

shift-out character. A special control character (X'0E')

that is used in EBCDIC systems to denote that the

subsequent bytes, up to the next shift-in control

character, represent DBCS characters. See also shift-in

character.

sign-on. A request that is made on behalf of an

individual CICS or IMS application process by an

attachment facility to enable DB2 to verify that it is

authorized to use DB2 resources.

simple page set. A nonpartitioned page set. A simple

page set initially consists of a single data set (page set

piece). If and when that data set is extended to 2 GB,

another data set is created, and so on, up to a total of

32 data sets. DB2 considers the data sets to be a single

contiguous linear address space containing a maximum

of 64 GB. Data is stored in the next available location

within this address space without regard to any

partitioning scheme.

simple table space. A table space that is neither

partitioned nor segmented.

single-byte character set (SBCS). A set of characters

in which each character is represented by a single byte.

Contrast with double-byte character set or multibyte

character set.

single-precision floating point number. A 32-bit

approximate representation of a real number.

size. In the C language, the total number of digits in a

decimal number (called the precision in SQL). The DB2

library uses the SQL term.

SMF. System Management Facilities.

SMP/E. System Modification Program/Extended.

SMS. Storage Management Subsystem.

SNA. Systems Network Architecture.

SNA network. The part of a network that conforms to

the formats and protocols of Systems Network

Architecture (SNA).

socket. A callable TCP/IP programming interface that

TCP/IP network applications use to communicate with

remote TCP/IP partners.

sourced function. A function that is implemented by

another built-in or user-defined function that is already

known to the database manager. This function can be a

scalar function or a column (aggregating) function; it

returns a single value from a set of values (for example,

MAX or AVG). Contrast with built-in function, external

function, and SQL function.

source program. A set of host language statements

and SQL statements that is processed by an SQL

precompiler.

source table. A table that can be a base table, a view, a

table expression, or a user-defined table function.

source type. An existing type that DB2 uses to

internally represent a distinct type.

space. A sequence of one or more blank characters.

special register. A storage area that DB2 defines for an

application process to use for storing information that

can be referenced in SQL statements. Examples of

special registers are USER and CURRENT DATE.

specific function name. A particular user-defined

function that is known to the database manager by its

specific name. Many specific user-defined functions can

have the same function name. When a user-defined

function is defined to the database, every function is

assigned a specific name that is unique within its

schema. Either the user can provide this name, or a

default name is used.

SPUFI. SQL Processor Using File Input.

SQL. Structured Query Language.

SQL authorization ID (SQL ID). The authorization ID

that is used for checking dynamic SQL statements in

some situations.

SQLCA. SQL communication area.

SQL communication area (SQLCA). A structure that

is used to provide an application program with

information about the execution of its SQL statements.

SQL connection. An association between an

application process and a local or remote application

server or database server.

SQLDA. SQL descriptor area.

SQL descriptor area (SQLDA). A structure that

describes input variables, output variables, or the

columns of a result table.

SQL escape character. The symbol that is used to

enclose an SQL delimited identifier. This symbol is the

double quotation mark ("). See also escape character.

SQL function. A user-defined function in which the

CREATE FUNCTION statement contains the source

code. The source code is a single SQL expression that

evaluates to a single value. The SQL user-defined

function can return only one parameter.

SQL ID. SQL authorization ID.

SQLJ. Structured Query Language (SQL) that is

embedded in the Java programming language.

shift-in character • SQLJ

364 Application Programming Guide and Reference for Java™

 |
 |

SQL path. An ordered list of schema names that are

used in the resolution of unqualified references to

user-defined functions, distinct types, and stored

procedures. In dynamic SQL, the current path is found

in the CURRENT PATH special register. In static SQL,

it is defined in the PATH bind option.

SQL procedure. A user-written program that can be

invoked with the SQL CALL statement. Contrast with

external procedure.

SQL processing conversation. Any conversation that

requires access of DB2 data, either through an

application or by dynamic query requests.

SQL Processor Using File Input (SPUFI). A facility of

the TSO attachment subcomponent that enables the

DB2I user to execute SQL statements without

embedding them in an application program.

SQL return code. Either SQLCODE or SQLSTATE.

SQL routine. A user-defined function or stored

procedure that is based on code that is written in SQL.

SQL statement coprocessor. An alternative to the DB2

precompiler that lets the user process SQL statements

at compile time. The user invokes an SQL statement

coprocessor by specifying a compiler option.

SQL string delimiter. A symbol that is used to enclose

an SQL string constant. The SQL string delimiter is the

apostrophe ('), except in COBOL applications, where

the user assigns the symbol, which is either an

apostrophe or a double quotation mark (").

SRB. Service request block.

SSI. Subsystem interface (in z/OS).

SSM. Subsystem member (in IMS).

stand-alone. An attribute of a program that means

that it is capable of executing separately from DB2,

without using DB2 services.

star join. A method of joining a dimension column of

a fact table to the key column of the corresponding

dimension table. See also join, dimension, and star

schema.

star schema. The combination of a fact table (which

contains most of the data) and a number of dimension

tables. See also star join, dimension, and dimension table.

statement handle. In DB2 ODBC, the data object that

contains information about an SQL statement that is

managed by DB2 ODBC. This includes information

such as dynamic arguments, bindings for dynamic

arguments and columns, cursor information, result

values, and status information. Each statement handle

is associated with the connection handle.

statement string. For a dynamic SQL statement, the

character string form of the statement.

statement trigger. A trigger that is defined with the

trigger granularity FOR EACH STATEMENT.

static cursor. A named control structure that does not

change the size of the result table or the order of its

rows after an application opens the cursor. Contrast

with dynamic cursor.

static SQL. SQL statements, embedded within a

program, that are prepared during the program

preparation process (before the program is executed).

After being prepared, the SQL statement does not

change (although values of host variables that are

specified by the statement might change).

storage group. A named set of disks on which DB2

data can be stored.

stored procedure. A user-written application program

that can be invoked through the use of the SQL CALL

statement.

string. See character string or graphic string.

strong typing. A process that guarantees that only

user-defined functions and operations that are defined

on a distinct type can be applied to that type. For

example, you cannot directly compare two currency

types, such as Canadian dollars and U.S. dollars. But

you can provide a user-defined function to convert one

currency to the other and then do the comparison.

structure. (1) A name that refers collectively to

different types of DB2 objects, such as tables, databases,

views, indexes, and table spaces. (2) A construct that

uses z/OS to map and manage storage on a coupling

facility. See also cache structure, list structure, or lock

structure.

Structured Query Language (SQL). A standardized

language for defining and manipulating data in a

relational database.

structure owner. In relation to group buffer pools, the

DB2 member that is responsible for the following

activities:

v Coordinating rebuild, checkpoint, and damage

assessment processing

v Monitoring the group buffer pool threshold and

notifying castout owners when the threshold has

been reached

subcomponent. A group of closely related DB2

modules that work together to provide a general

function.

subject table. The table for which a trigger is created.

When the defined triggering event occurs on this table,

the trigger is activated.

SQL path • subject table

Glossary 365

 |
 |
 |
 |

subpage. The unit into which a physical index page

can be divided.

subquery. A SELECT statement within the WHERE or

HAVING clause of another SQL statement; a nested

SQL statement.

subselect. That form of a query that does not include

an ORDER BY clause, an UPDATE clause, or UNION

operators.

substitution character. A unique character that is

substituted during character conversion for any

characters in the source program that do not have a

match in the target coding representation.

subsystem. A distinct instance of a relational database

management system (RDBMS).

surrogate pair. A coded representation for a single

character that consists of a sequence of two 16-bit code

units, in which the first value of the pair is a

high-surrogate code unit in the range U+D800 through

U+DBFF, and the second value is a low-surrogate code

unit in the range U+DC00 through U+DFFF. Surrogate

pairs provide an extension mechanism for encoding

917 476 characters without requiring the use of 32-bit

characters.

SVC dump. A dump that is issued when a z/OS or a

DB2 functional recovery routine detects an error.

sync point. See commit point.

syncpoint tree. The tree of recovery managers and

resource managers that are involved in a logical unit of

work, starting with the recovery manager, that make

the final commit decision.

synonym. In SQL, an alternative name for a table or

view. Synonyms can be used to refer only to objects at

the subsystem in which the synonym is defined.

syntactic character set. A set of 81 graphic characters

that are registered in the IBM registry as character set

00640. This set was originally recommended to the

programming language community to be used for

syntactic purposes toward maximizing portability and

interchangeability across systems and country

boundaries. It is contained in most of the primary

registered character sets, with a few exceptions. See

also invariant character set.

Sysplex. See Parallel Sysplex.

Sysplex query parallelism. Parallel execution of a

single query that is accomplished by using multiple

tasks on more than one DB2 subsystem. See also query

CP parallelism.

system administrator. The person at a computer

installation who designs, controls, and manages the use

of the computer system.

system agent. A work request that DB2 creates

internally such as prefetch processing, deferred writes,

and service tasks.

system conversation. The conversation that two DB2

subsystems must establish to process system messages

before any distributed processing can begin.

system diagnostic work area (SDWA). The data that

is recorded in a SYS1.LOGREC entry that describes a

program or hardware error.

system-directed connection. A connection that a

relational DBMS manages by processing SQL

statements with three-part names.

System Modification Program/Extended (SMP/E). A

z/OS tool for making software changes in

programming systems (such as DB2) and for

controlling those changes.

Systems Network Architecture (SNA). The

description of the logical structure, formats, protocols,

and operational sequences for transmitting information

through and controlling the configuration and

operation of networks.

SYS1.DUMPxx data set. A data set that contains a

system dump (in z/OS).

SYS1.LOGREC. A service aid that contains important

information about program and hardware errors (in

z/OS).

T

table. A named data object consisting of a specific

number of columns and some number of unordered

rows. See also base table or temporary table.

table-controlled partitioning. A type of partitioning in

which partition boundaries for a partitioned table are

controlled by values that are defined in the CREATE

TABLE statement. Partition limits are saved in the

LIMITKEY_INTERNAL column of the

SYSIBM.SYSTABLEPART catalog table.

table function. A function that receives a set of

arguments and returns a table to the SQL statement

that references the function. A table function can be

referenced only in the FROM clause of a subselect.

table locator. A mechanism that allows access to

trigger transition tables in the FROM clause of SELECT

statements, in the subselect of INSERT statements, or

from within user-defined functions. A table locator is a

fullword integer value that represents a transition table.

table space. A page set that is used to store the

records in one or more tables.

subpage • table space

366 Application Programming Guide and Reference for Java™

 |
 |
 |
 |
 |
 |

table space set. A set of table spaces and partitions

that should be recovered together for one of these

reasons:

v Each of them contains a table that is a parent or

descendent of a table in one of the others.

v The set contains a base table and associated auxiliary

tables.

A table space set can contain both types of

relationships.

task control block (TCB). A z/OS control block that is

used to communicate information about tasks within an

address space that are connected to DB2. See also

address space connection.

TB. Terabyte (1 099 511 627 776 bytes).

TCB. Task control block (in z/OS).

TCP/IP. A network communication protocol that

computer systems use to exchange information across

telecommunication links.

TCP/IP port. A 2-byte value that identifies an end user

or a TCP/IP network application within a TCP/IP host.

template. A DB2 utilities output data set descriptor

that is used for dynamic allocation. A template is

defined by the TEMPLATE utility control statement.

temporary table. A table that holds temporary data.

Temporary tables are useful for holding or sorting

intermediate results from queries that contain a large

number of rows. The two types of temporary table,

which are created by different SQL statements, are the

created temporary table and the declared temporary

table. Contrast with result table. See also created

temporary table and declared temporary table.

Terminal Monitor Program (TMP). A program that

provides an interface between terminal users and

command processors and has access to many system

services (in z/OS).

thread. The DB2 structure that describes an

application’s connection, traces its progress, processes

resource functions, and delimits its accessibility to DB2

resources and services. Most DB2 functions execute

under a thread structure. See also allied thread and

database access thread.

threadsafe. A characteristic of code that allows

multithreading both by providing private storage areas

for each thread, and by properly serializing shared

(global) storage areas.

three-part name. The full name of a table, view, or

alias. It consists of a location name, authorization ID,

and an object name, separated by a period.

time. A three-part value that designates a time of day

in hours, minutes, and seconds.

time duration. A decimal integer that represents a

number of hours, minutes, and seconds.

timeout. Abnormal termination of either the DB2

subsystem or of an application because of the

unavailability of resources. Installation specifications

are set to determine both the amount of time DB2 is to

wait for IRLM services after starting, and the amount

of time IRLM is to wait if a resource that an application

requests is unavailable. If either of these time

specifications is exceeded, a timeout is declared.

Time-Sharing Option (TSO). An option in MVS that

provides interactive time sharing from remote

terminals.

timestamp. A seven-part value that consists of a date

and time. The timestamp is expressed in years, months,

days, hours, minutes, seconds, and microseconds.

TMP. Terminal Monitor Program.

to-do. A state of a unit of recovery that indicates that

the unit of recovery’s changes to recoverable DB2

resources are indoubt and must either be applied to the

disk media or backed out, as determined by the

commit coordinator.

trace. A DB2 facility that provides the ability to

monitor and collect DB2 monitoring, auditing,

performance, accounting, statistics, and serviceability

(global) data.

transaction lock. A lock that is used to control

concurrent execution of SQL statements.

transaction program name. In SNA LU 6.2

conversations, the name of the program at the remote

logical unit that is to be the other half of the

conversation.

transient XML data type. A data type for XML values

that exists only during query processing.

transition table. A temporary table that contains all

the affected rows of the subject table in their state

before or after the triggering event occurs. Triggered

SQL statements in the trigger definition can reference

the table of changed rows in the old state or the new

state.

transition variable. A variable that contains a column

value of the affected row of the subject table in its state

before or after the triggering event occurs. Triggered

SQL statements in the trigger definition can reference

the set of old values or the set of new values.

tree structure. A data structure that represents entities

in nodes, with a most one parent node for each node,

and with only one root node.

table space set • tree structure

Glossary 367

 |
 |

 |
 |
 |

trigger. A set of SQL statements that are stored in a

DB2 database and executed when a certain event

occurs in a DB2 table.

trigger activation. The process that occurs when the

trigger event that is defined in a trigger definition is

executed. Trigger activation consists of the evaluation

of the triggered action condition and conditional

execution of the triggered SQL statements.

trigger activation time. An indication in the trigger

definition of whether the trigger should be activated

before or after the triggered event.

trigger body. The set of SQL statements that is

executed when a trigger is activated and its triggered

action condition evaluates to true. A trigger body is

also called triggered SQL statements.

trigger cascading. The process that occurs when the

triggered action of a trigger causes the activation of

another trigger.

triggered action. The SQL logic that is performed

when a trigger is activated. The triggered action

consists of an optional triggered action condition and a

set of triggered SQL statements that are executed only

if the condition evaluates to true.

triggered action condition. An optional part of the

triggered action. This Boolean condition appears as a

WHEN clause and specifies a condition that DB2

evaluates to determine if the triggered SQL statements

should be executed.

triggered SQL statements. The set of SQL statements

that is executed when a trigger is activated and its

triggered action condition evaluates to true. Triggered

SQL statements are also called the trigger body.

trigger granularity. A characteristic of a trigger, which

determines whether the trigger is activated:

v Only once for the triggering SQL statement

v Once for each row that the SQL statement modifies

triggering event. The specified operation in a trigger

definition that causes the activation of that trigger. The

triggering event is comprised of a triggering operation

(INSERT, UPDATE, or DELETE) and a subject table on

which the operation is performed.

triggering SQL operation. The SQL operation that

causes a trigger to be activated when performed on the

subject table.

trigger package. A package that is created when a

CREATE TRIGGER statement is executed. The package

is executed when the trigger is activated.

TSO. Time-Sharing Option.

TSO attachment facility. A DB2 facility consisting of

the DSN command processor and DB2I. Applications

that are not written for the CICS or IMS environments

can run under the TSO attachment facility.

typed parameter marker. A parameter marker that is

specified along with its target data type. It has the

general form:

CAST(? AS data-type)

type 1 indexes. Indexes that were created by a release

of DB2 before DB2 Version 4 or that are specified as

type 1 indexes in Version 4. Contrast with type 2

indexes. As of Version 8, type 1 indexes are no longer

supported.

type 2 indexes. Indexes that are created on a release

of DB2 after Version 7 or that are specified as type 2

indexes in Version 4 or later.

U

UCS-2. Universal Character Set, coded in 2 octets,

which means that characters are represented in 16-bits

per character.

UDF. User-defined function.

UDT. User-defined data type. In DB2 UDB for z/OS,

the term distinct type is used instead of user-defined

data type. See distinct type.

uncommitted read (UR). The isolation level that

allows an application to read uncommitted data.

underlying view. The view on which another view is

directly or indirectly defined.

undo. A state of a unit of recovery that indicates that

the changes that the unit of recovery made to

recoverable DB2 resources must be backed out.

Unicode. A standard that parallels the ISO-10646

standard. Several implementations of the Unicode

standard exist, all of which have the ability to represent

a large percentage of the characters that are contained

in the many scripts that are used throughout the world.

uniform resource locator (URL). A Web address,

which offers a way of naming and locating specific

items on the Web.

union. An SQL operation that combines the results of

two SELECT statements. Unions are often used to

merge lists of values that are obtained from several

tables.

unique constraint. An SQL rule that no two values in

a primary key, or in the key of a unique index, can be

the same.

unique index. An index that ensures that no identical

key values are stored in a column or a set of columns

in a table.

trigger • unique index

368 Application Programming Guide and Reference for Java™

unit of recovery. A recoverable sequence of operations

within a single resource manager, such as an instance

of DB2. Contrast with unit of work.

unit of recovery identifier (URID). The LOGRBA of

the first log record for a unit of recovery. The URID

also appears in all subsequent log records for that unit

of recovery.

unit of work. A recoverable sequence of operations

within an application process. At any time, an

application process is a single unit of work, but the life

of an application process can involve many units of

work as a result of commit or rollback operations. In a

multisite update operation, a single unit of work can

include several units of recovery. Contrast with unit of

recovery.

Universal Unique Identifier (UUID). An identifier

that is immutable and unique across time and space (in

z/OS).

unlock. The act of releasing an object or system

resource that was previously locked and returning it to

general availability within DB2.

untyped parameter marker. A parameter marker that

is specified without its target data type. It has the form

of a single question mark (?).

updatability. The ability of a cursor to perform

positioned updates and deletes. The updatability of a

cursor can be influenced by the SELECT statement and

the cursor sensitivity option that is specified on the

DECLARE CURSOR statement.

update hole. The location on which a cursor is

positioned when a row in a result table is fetched again

and the new values no longer satisfy the search

condition. DB2 marks a row in the result table as an

update hole when an update to the corresponding row

in the database causes that row to no longer qualify for

the result table.

update trigger. A trigger that is defined with the

triggering SQL operation UPDATE.

upstream. The node in the syncpoint tree that is

responsible, in addition to other recovery or resource

managers, for coordinating the execution of a

two-phase commit.

UR. Uncommitted read.

URE. Unit of recovery element.

URID . Unit of recovery identifier.

URL. Uniform resource locator.

user-defined data type (UDT). See distinct type.

user-defined function (UDF). A function that is

defined to DB2 by using the CREATE FUNCTION

statement and that can be referenced thereafter in SQL

statements. A user-defined function can be an external

function, a sourced function, or an SQL function. Contrast

with built-in function.

user view. In logical data modeling, a model or

representation of critical information that the business

requires.

UTF-8. Unicode Transformation Format, 8-bit

encoding form, which is designed for ease of use with

existing ASCII-based systems. The CCSID value for

data in UTF-8 format is 1208. DB2 UDB for z/OS

supports UTF-8 in mixed data fields.

UTF-16. Unicode Transformation Format, 16-bit

encoding form, which is designed to provide code

values for over a million characters and a superset of

UCS-2. The CCSID value for data in UTF-16 format is

1200. DB2 UDB for z/OS supports UTF-16 in graphic

data fields.

UUID. Universal Unique Identifier.

V

value. The smallest unit of data that is manipulated in

SQL.

variable. A data element that specifies a value that

can be changed. A COBOL elementary data item is an

example of a variable. Contrast with constant.

variant function. See nondeterministic function.

varying-length string. A character or graphic string

whose length varies within set limits. Contrast with

fixed-length string.

version. A member of a set of similar programs,

DBRMs, packages, or LOBs.

 A version of a program is the source code that is

produced by precompiling the program. The

program version is identified by the program name

and a timestamp (consistency token).

 A version of a DBRM is the DBRM that is

produced by precompiling a program. The DBRM

version is identified by the same program name and

timestamp as a corresponding program version.

 A version of a package is the result of binding a

DBRM within a particular database system. The

package version is identified by the same program

name and consistency token as the DBRM.

 A version of a LOB is a copy of a LOB value at a

point in time. The version number for a LOB is

stored in the auxiliary index entry for the LOB.

view. An alternative representation of data from one

or more tables. A view can include all or some of the

columns that are contained in tables on which it is

defined.

unit of recovery • view

Glossary 369

view check option. An option that specifies whether

every row that is inserted or updated through a view

must conform to the definition of that view. A view

check option can be specified with the WITH

CASCADED CHECK OPTION, WITH CHECK

OPTION, or WITH LOCAL CHECK OPTION clauses of

the CREATE VIEW statement.

Virtual Storage Access Method (VSAM). An access

method for direct or sequential processing of fixed- and

varying-length records on disk devices. The records in

a VSAM data set or file can be organized in logical

sequence by a key field (key sequence), in the physical

sequence in which they are written on the data set or

file (entry-sequence), or by relative-record number (in

z/OS).

Virtual Telecommunications Access Method (VTAM).

An IBM licensed program that controls communication

and the flow of data in an SNA network (in z/OS).

volatile table. A table for which SQL operations

choose index access whenever possible.

VSAM. Virtual Storage Access Method.

VTAM. Virtual Telecommunication Access Method (in

z/OS).

W

warm start. The normal DB2 restart process, which

involves reading and processing log records so that

data that is under the control of DB2 is consistent.

Contrast with cold start.

WLM application environment. A z/OS Workload

Manager attribute that is associated with one or more

stored procedures. The WLM application environment

determines the address space in which a given DB2

stored procedure runs.

write to operator (WTO). An optional user-coded

service that allows a message to be written to the

system console operator informing the operator of

errors and unusual system conditions that might need

to be corrected (in z/OS).

WTO. Write to operator.

WTOR. Write to operator (WTO) with reply.

X

XCF. See cross-system coupling facility.

XES. See cross-system extended services.

XML. See Extensible Markup Language.

XML attribute. A name-value pair within a tagged

XML element that modifies certain features of the

element.

XML element. A logical structure in an XML

document that is delimited by a start and an end tag.

Anything between the start tag and the end tag is the

content of the element.

XML node. The smallest unit of valid, complete

structure in a document. For example, a node can

represent an element, an attribute, or a text string.

XML publishing functions. Functions that return

XML values from SQL values.

X/Open. An independent, worldwide open systems

organization that is supported by most of the world’s

largest information systems suppliers, user

organizations, and software companies. X/Open's goal

is to increase the portability of applications by

combining existing and emerging standards.

XRF. Extended recovery facility.

Z

z/OS. An operating system for the eServer™ product

line that supports 64-bit real and virtual storage.

z/OS Distributed Computing Environment (z/OS

DCE). A set of technologies that are provided by the

Open Software Foundation to implement distributed

computing.

view check option • z/OS Distributed Computing Environment (z/OS DCE)

370 Application Programming Guide and Reference for Java™

|
|

|

 |
 |
 |

 #
 #
 #
 #

 |
 |
 |

 |
 |

 |
 |

Bibliography

DB2 Universal Database for z/OS Version 8

product information:

v DB2 Administration Guide, SC18-7413

v DB2 Application Programming and SQL Guide,

SC18-7415

v DB2 Application Programming Guide and Reference

for Java, SC18-7414

v DB2 Codes, GC18-9603

v DB2 Command Reference, SC18-7416

v DB2 Common Criteria Guide, SC18-9672

v DB2 Data Sharing: Planning and Administration,

SC18-7417

v DB2 Diagnosis Guide and Reference, LY37-3201

v DB2 Diagnostic Quick Reference Card, LY37-3202

v DB2 Image, Audio, and Video Extenders

Administration and Programming, SC18-7429

v DB2 Installation Guide, GC18-7418

v DB2 Licensed Program Specifications, GC18-7420

v DB2 Management Clients Package Program

Directory, GI10-8567

v DB2 Messages, GC18-9602

v DB2 ODBC Guide and Reference, SC18-7423

v The Official Introduction to DB2 UDB for z/OS

v DB2 Program Directory, GI10-8566

v DB2 RACF Access Control Module Guide,

SC18-7433

v DB2 Reference for Remote DRDA Requesters and

Servers, SC18-7424

v DB2 Reference Summary, SX26-3853

v DB2 Release Planning Guide, SC18-7425

v DB2 SQL Reference, SC18-7426

v DB2 Text Extender Administration and

Programming, SC18-7430

v DB2 Utility Guide and Reference, SC18-7427

v DB2 What's New?, GC18-7428

v DB2 XML Extender for z/OS Administration and

Programming, SC18-7431

Books and resources about related products:

APL2®

v APL2 Programming Guide, SH21-1072

v APL2 Programming: Language Reference,

SH21-1061

v APL2 Programming: Using Structured Query

Language (SQL), SH21-1057

BookManager® READ/MVS

v BookManager READ/MVS V1R3: Installation

Planning & Customization, SC38-2035

C language: IBM C/C++ for z/OS

v z/OS C/C++ Programming Guide, SC09-4765

v z/OS C/C++ Run-Time Library Reference,

SA22-7821

Character Data Representation Architecture

v Character Data Representation Architecture

Overview, GC09-2207

v Character Data Representation Architecture

Reference and Registry, SC09-2190

CICS Transaction Server for z/OS

The publication order numbers below are for

Version 2 Release 2 and Version 2 Release 3 (with

the release 2 number listed first).

v CICS Transaction Server for z/OS Information

Center, SK3T-6903 or SK3T-6957.

v CICS Transaction Server for z/OS Application

Programming Guide, SC34-5993 or SC34-6231

v CICS Transaction Server for z/OS Application

Programming Reference, SC34-5994 or SC34-6232

v CICS Transaction Server for z/OS CICS-RACF

Security Guide, SC34-6011 or SC34-6249

v CICS Transaction Server for z/OS CICS Supplied

Transactions, SC34-5992 or SC34-6230

v CICS Transaction Server for z/OS Customization

Guide, SC34-5989 or SC34-6227

v CICS Transaction Server for z/OS Data Areas,

LY33-6100 or LY33-6103

v CICS Transaction Server for z/OS DB2 Guide,

SC34-6014 or SC34-6252

v CICS Transaction Server for z/OS External

Interfaces Guide, SC34-6006 or SC34-6244

v CICS Transaction Server for z/OS Installation

Guide, GC34-5985 or GC34-6224

v CICS Transaction Server for z/OS

Intercommunication Guide, SC34-6005 or

SC34-6243

v CICS Transaction Server for z/OS Messages and

Codes, GC34-6003 or GC34-6241

v CICS Transaction Server for z/OS Operations and

Utilities Guide, SC34-5991 or SC34-6229

© Copyright IBM Corp. 1998, 2006 371

v CICS Transaction Server for z/OS Performance

Guide, SC34-6009 or SC34-6247

v CICS Transaction Server for z/OS Problem

Determination Guide, SC34-6002 or SC34-6239

v CICS Transaction Server for z/OS Release Guide,

GC34-5983 or GC34-6218

v CICS Transaction Server for z/OS Resource

Definition Guide, SC34-5990 or SC34-6228

v CICS Transaction Server for z/OS System

Definition Guide, SC34-5988 or SC34–6226

v CICS Transaction Server for z/OS System

Programming Reference, SC34-5595 or SC34–6233

CICS Transaction Server for OS/390

v CICS Transaction Server for OS/390 Application

Programming Guide, SC33-1687

v CICS Transaction Server for OS/390 DB2 Guide,

SC33-1939

v CICS Transaction Server for OS/390 External

Interfaces Guide, SC33-1944

v CICS Transaction Server for OS/390 Resource

Definition Guide, SC33-1684

COBOL:

v IBM COBOL Language Reference, SC27-1408

v Enterprise COBOL for z/OS Programming Guide,

SC27-1412

Database Design

v DB2 for z/OS and OS/390 Development for

Performance Volume I by Gabrielle Wiorkowski,

Gabrielle & Associates, ISBN 0-96684-605-2

v DB2 for z/OS and OS/390 Development for

Performance Volume II by Gabrielle Wiorkowski,

Gabrielle & Associates, ISBN 0-96684-606-0

v Handbook of Relational Database Design by C.

Fleming and B. Von Halle, Addison Wesley,

ISBN 0-20111-434-8

DB2 Administration Tool

v DB2 Administration Tool for z/OS User's Guide

and Reference, available on the Web at

www.ibm.com/software/data/db2imstools/

library.html

DB2 Buffer Pool Analyzer for z/OS

v DB2 Buffer Pool Tool for z/OS User's Guide and

Reference, available on the Web at

www.ibm.com/software/data/db2imstools/

library.html

DB2 Connect™

v IBM DB2 Connect Quick Beginnings for DB2

Connect Enterprise Edition, GC09-4833

v IBM DB2 Connect Quick Beginnings for DB2

Connect Personal Edition, GC09-4834

v IBM DB2 Connect User's Guide, SC09-4835

DB2 DataPropagator™

v DB2 Universal Database Replication Guide and

Reference, SC27-1121

DB2 Performance Expert for z/OS, Version 1

The following books are part of the DB2

Performance Expert library. Some of these books

include information about the following tools:

IBM DB2 Performance Expert for z/OS; IBM DB2

Performance Monitor for z/OS; and DB2 Buffer

Pool Analyzer for z/OS.

v OMEGAMON Buffer Pool Analyzer User's Guide,

SC18-7972

v OMEGAMON Configuration and Customization,

SC18-7973

v OMEGAMON Messages, SC18-7974

v OMEGAMON Monitoring Performance from ISPF,

SC18-7975

v OMEGAMON Monitoring Performance from

Performance Expert Client, SC18-7976

v OMEGAMON Program Directory, GI10-8549

v OMEGAMON Report Command Reference,

SC18-7977

v OMEGAMON Report Reference, SC18-7978

v Using IBM Tivoli OMEGAMON XE on z/OS,

SC18-7979

DB2 Query Management Facility (QMF) Version

8.1

v DB2 Query Management Facility: DB2 QMF High

Performance Option User’s Guide for TSO/CICS,

SC18-7450

v DB2 Query Management Facility: DB2 QMF

Messages and Codes, GC18-7447

v DB2 Query Management Facility: DB2 QMF

Reference, SC18-7446

v DB2 Query Management Facility: Developing DB2

QMF Applications, SC18-7651

v DB2 Query Management Facility: Getting Started

with DB2 QMF for Windows and DB2 QMF for

WebSphere, SC18-7449

v DB2 Query Management Facility: Getting Started

with DB2 QMF Query Miner, GC18-7451

v DB2 Query Management Facility: Installing and

Managing DB2 QMF for TSO/CICS, GC18-7444

v DB2 Query Management Facility: Installing and

Managing DB2 QMF for Windows and DB2 QMF

for WebSphere, GC18-7448

372 Application Programming Guide and Reference for Java™

v DB2 Query Management Facility: Introducing DB2

QMF, GC18-7443

v DB2 Query Management Facility: Using DB2

QMF, SC18-7445

v DB2 Query Management Facility: DB2 QMF

Visionary Developer's Guide, SC18-9093

v DB2 Query Management Facility: DB2 QMF

Visionary Getting Started Guide, GC18-9092

DB2 Redbooks™

For access to all IBM Redbooks about DB2, see

the IBM Redbooks Web page at

www.ibm.com/redbooks

DB2 Server for VSE & VM

v DB2 Server for VM: DBS Utility, SC09-2983

DB2 Universal Database Cross-Platform

information

v IBM DB2 Universal Database SQL Reference for

Cross-Platform Development, available at

www.ibm.com/software/data/

developer/cpsqlref/

DB2 Universal Database for iSeries

The following books are available at

www.ibm.com/iseries/infocenter

v DB2 Universal Database for iSeries Performance

and Query Optimization

v DB2 Universal Database for iSeries Database

Programming

v DB2 Universal Database for iSeries SQL

Programming Concepts

v DB2 Universal Database for iSeries SQL

Programming with Host Languages

v DB2 Universal Database for iSeries SQL Reference

v DB2 Universal Database for iSeries Distributed

Data Management

v DB2 Universal Database for iSeries Distributed

Database Programming

DB2 Universal Database for Linux, UNIX, and

Windows:

v DB2 Universal Database Administration Guide:

Planning, SC09-4822

v DB2 Universal Database Administration Guide:

Implementation, SC09-4820

v DB2 Universal Database Administration Guide:

Performance, SC09-4821

v DB2 Universal Database Administrative API

Reference, SC09-4824

v DB2 Universal Database Application Development

Guide: Building and Running Applications,

SC09-4825

v DB2 Universal Database Call Level Interface Guide

and Reference, Volumes 1 and 2, SC09-4849 and

SC09-4850

v DB2 Universal Database Command Reference,

SC09-4828

v DB2 Universal Database SQL Reference Volume 1,

SC09-4844

v DB2 Universal Database SQL Reference Volume 2,

SC09-4845

Device Support Facilities

v Device Support Facilities User's Guide and

Reference, GC35-0033

DFSMS

These books provide information about a variety

of components of DFSMS, including z/OS

DFSMS, z/OS DFSMSdfp™, z/OS DFSMSdss,

z/OS DFSMShsm, and z/OS DFP.

v z/OS DFSMS Access Method Services for Catalogs,

SC26-7394

v z/OS DFSMSdss Storage Administration Guide,

SC35-0423

v z/OS DFSMSdss Storage Administration Reference,

SC35-0424

v z/OS DFSMShsm Managing Your Own Data,

SC35-0420

v z/OS DFSMSdfp: Using DFSMSdfp in the z/OS

Environment, SC26-7473

v z/OS DFSMSdfp Diagnosis Reference, GY27-7618

v z/OS DFSMS: Implementing System-Managed

Storage, SC27-7407

v z/OS DFSMS: Macro Instructions for Data Sets,

SC26-7408

v z/OS DFSMS: Managing Catalogs, SC26-7409

v z/OS MVS: Program Management User's Guide

and Reference, SA22-7643

v z/OS MVS Program Management: Advanced

Facilities, SA22-7644

v z/OS DFSMSdfp Storage Administration Reference,

SC26-7402

v z/OS DFSMS: Using Data Sets, SC26-7410

v DFSMS/MVS: Using Advanced Services ,

SC26-7400

v DFSMS/MVS: Utilities, SC26-7414

DFSORT™

v DFSORT Application Programming: Guide,

SC33-4035

v DFSORT Installation and Customization,

SC33-4034

Distributed Relational Database Architecture

Bibliography 373

v Open Group Technical Standard; the Open Group

presently makes the following DRDA books

available through its Web site at

www.opengroup.org

– Open Group Technical Standard, DRDA Version

3 Vol. 1: Distributed Relational Database

Architecture

– Open Group Technical Standard, DRDA Version

3 Vol. 2: Formatted Data Object Content

Architecture

– Open Group Technical Standard, DRDA Version

3 Vol. 3: Distributed Data Management

Architecture

Domain Name System

v DNS and BIND, Third Edition, Paul Albitz and

Cricket Liu, O’Reilly, ISBN 0-59600-158-4

Education

v Information about IBM educational offerings is

available on the Web at

http://www.ibm.com/software/sw-training/

v A collection of glossaries of IBM terms is

available on the IBM Terminology Web site at

www.ibm.com/ibm/terminology/index.html

eServer zSeries®

v IBM eServer zSeries Processor Resource/System

Manager Planning Guide, SB10-7033

Fortran: VS Fortran

v VS Fortran Version 2: Language and Library

Reference, SC26-4221

v VS Fortran Version 2: Programming Guide for

CMS and MVS, SC26-4222

High Level Assembler

v High Level Assembler for MVS and VM and VSE

Language Reference, SC26-4940

v High Level Assembler for MVS and VM and VSE

Programmer's Guide, SC26-4941

ICSF

v z/OS ICSF Overview, SA22-7519

v Integrated Cryptographic Service Facility

Administrator's Guide, SA22-7521

IMS Version 8

IMS product information is available on the IMS

Library Web page, which you can find at

www.ibm.com/ims

v IMS Administration Guide: System, SC27-1284

v IMS Administration Guide: Transaction Manager,

SC27-1285

v IMS Application Programming: Database Manager,

SC27-1286

v IMS Application Programming: Design Guide,

SC27-1287

v IMS Application Programming: Transaction

Manager, SC27-1289

v IMS Command Reference, SC27-1291

v IMS Customization Guide, SC27-1294

v IMS Install Volume 1: Installation Verification,

GC27-1297

v IMS Install Volume 2: System Definition and

Tailoring, GC27-1298

v IMS Messages and Codes Volumes 1 and 2,

GC27-1301 and GC27-1302

v IMS Open Transaction Manager Access Guide and

Reference, SC18-7829

v IMS Utilities Reference: System, SC27-1309

General information about IMS Batch Terminal

Simulator for z/OS is available on the Web at

www.ibm.com/software/data/db2imstools/

library.html

IMS DataPropagator

v IMS DataPropagator for z/OS Administrator's

Guide for Log, SC27-1216

v IMS DataPropagator: An Introduction, GC27-1211

v IMS DataPropagator for z/OS Reference,

SC27-1210

ISPF

v z/OS ISPF Dialog Developer’s Guide, SC23-4821

v z/OS ISPF Messages and Codes, SC34-4815

v z/OS ISPF Planning and Customizing, GC34-4814

v z/OS ISPF User’s Guide Volumes 1 and 2,

SC34-4822 and SC34-4823

Language Environment

v Debug Tool User's Guide and Reference, SC18-7171

v Debug Tool for z/OS and OS/390 Reference and

Messages, SC18-7172

v z/OS Language Environment Concepts Guide,

SA22-7567

v z/OS Language Environment Customization,

SA22-7564

v z/OS Language Environment Debugging Guide,

GA22-7560

v z/OS Language Environment Programming Guide,

SA22-7561

v z/OS Language Environment Programming

Reference, SA22-7562

MQSeries®

v MQSeries Application Messaging Interface,

SC34-5604

374 Application Programming Guide and Reference for Java™

v MQSeries for OS/390 Concepts and Planning

Guide, GC34-5650

v MQSeries for OS/390 System Setup Guide,

SC34-5651

National Language Support

v National Language Design Guide Volume 1,

SE09-8001

v IBM National Language Support Reference Manual

Volume 2, SE09-8002

NetView®

v Tivoli NetView for z/OS Installation: Getting

Started, SC31-8872

v Tivoli NetView for z/OS User's Guide, GC31-8849

Microsoft ODBC

Information about Microsoft ODBC is available at

http://msdn.microsoft.com/library/

Parallel Sysplex Library

v System/390 9672 Parallel Transaction Server, 9672

Parallel Enterprise Server, 9674 Coupling Facility

System Overview For R1/R2/R3 Based Models,

SB10-7033

v z/OS Parallel Sysplex Application Migration,

SA22-7662

v z/OS Parallel Sysplex Overview: An Introduction to

Data Sharing and Parallelism, SA22-7661

v z/OS Parallel Sysplex Test Report, SA22-7663

The Parallel Sysplex Configuration Assistant is

available at www.ibm.com/s390/pso/psotool

PL/I: Enterprise PL/I for z/OS

v IBM Enterprise PL/I for z/OS Language Reference,

SC27-1460

v IBM Enterprise PL/I for z/OS Programming Guide,

SC27-1457

PL/I: PL/I for MVS & VM

v PL/I for MVS & VM Programming Guide,

SC26-3113

SMP/E

v SMP/E for z/OS and OS/390 Reference, SA22-7772

v SMP/E for z/OS and OS/390 User's Guide,

SA22-7773

Storage Management

v z/OS DFSMS: Implementing System-Managed

Storage, SC26-7407

v MVS/ESA Storage Management Library: Managing

Data, SC26-7397

v MVS/ESA Storage Management Library: Managing

Storage Groups, SC35-0421

v MVS Storage Management Library: Storage

Management Subsystem Migration Planning Guide,

GC26-7398

System Network Architecture (SNA)

v SNA Formats, GA27-3136

v SNA LU 6.2 Peer Protocols Reference, SC31-6808

v SNA Transaction Programmer's Reference Manual

for LU Type 6.2, GC30-3084

v SNA/Management Services Alert Implementation

Guide, GC31-6809

TCP/IP

v IBM TCP/IP for MVS: Customization &

Administration Guide, SC31-7134

v IBM TCP/IP for MVS: Diagnosis Guide,

LY43-0105

v IBM TCP/IP for MVS: Messages and Codes,

SC31-7132

v IBM TCP/IP for MVS: Planning and Migration

Guide, SC31-7189

TotalStorage™ Enterprise Storage Server

v RAMAC Virtual Array: Implementing Peer-to-Peer

Remote Copy, SG24-5680

v Enterprise Storage Server Introduction and

Planning, GC26-7444

v IBM RAMAC Virtual Array, SG24-6424

Unicode

v z/OS Support for Unicode: Using Conversion

Services, SA22-7649

Information about Unicode, the Unicode

consortium, the Unicode standard, and standards

conformance requirements is available at

www.unicode.org

VTAM

v Planning for NetView, NCP, and VTAM,

SC31-8063

v VTAM for MVS/ESA Diagnosis, LY43-0078

v VTAM for MVS/ESA Messages and Codes,

GC31-8369

v VTAM for MVS/ESA Network Implementation

Guide, SC31-8370

v VTAM for MVS/ESA Operation, SC31-8372

v z/OS Communications Server SNA Programming,

SC31-8829

v z/OS Communicatons Server SNA Programmer's

LU 6.2 Reference, SC31-8810

v VTAM for MVS/ESA Resource Definition

Reference, SC31-8377

Bibliography 375

WebSphere family

v WebSphere MQ Integrator Broker: Administration

Guide, SC34-6171

v WebSphere MQ Integrator Broker for z/OS:

Customization and Administration Guide,

SC34-6175

v WebSphere MQ Integrator Broker: Introduction and

Planning, GC34-5599

v WebSphere MQ Integrator Broker: Using the

Control Center, SC34-6168

z/Architecture™

v z/Architecture Principles of Operation, SA22-7832

z/OS

v z/OS C/C++ Programming Guide, SC09-4765

v z/OS C/C++ Run-Time Library Reference,

SA22-7821

v z/OS C/C++ User's Guide, SC09-4767

v z/OS Communications Server: IP Configuration

Guide, SC31-8875

v z/OS DCE Administration Guide, SC24-5904

v z/OS DCE Introduction, GC24-5911

v z/OS DCE Messages and Codes, SC24-5912

v z/OS Information Roadmap, SA22-7500

v z/OS Introduction and Release Guide, GA22-7502

v z/OS JES2 Initialization and Tuning Guide,

SA22-7532

v z/OS JES3 Initialization and Tuning Guide,

SA22-7549

v z/OS Language Environment Concepts Guide,

SA22-7567

v z/OS Language Environment Customization,

SA22-7564

v z/OS Language Environment Debugging Guide,

GA22-7560

v z/OS Language Environment Programming Guide,

SA22-7561

v z/OS Language Environment Programming

Reference, SA22-7562

v z/OS Managed System Infrastructure for Setup

User's Guide, SC33-7985

v z/OS MVS Diagnosis: Procedures, GA22-7587

v z/OS MVS Diagnosis: Reference, GA22-7588

v z/OS MVS Diagnosis: Tools and Service Aids,

GA22-7589

v z/OS MVS Initialization and Tuning Guide,

SA22-7591

v z/OS MVS Initialization and Tuning Reference,

SA22-7592

v z/OS MVS Installation Exits, SA22-7593

v z/OS MVS JCL Reference, SA22-7597

v z/OS MVS JCL User's Guide, SA22-7598

v z/OS MVS Planning: Global Resource Serialization,

SA22-7600

v z/OS MVS Planning: Operations, SA22-7601

v z/OS MVS Planning: Workload Management,

SA22-7602

v z/OS MVS Programming: Assembler Services

Guide, SA22-7605

v z/OS MVS Programming: Assembler Services

Reference, Volumes 1 and 2, SA22-7606 and

SA22-7607

v z/OS MVS Programming: Authorized Assembler

Services Guide, SA22-7608

v z/OS MVS Programming: Authorized Assembler

Services Reference Volumes 1-4, SA22-7609,

SA22-7610, SA22-7611, and SA22-7612

v z/OS MVS Programming: Callable Services for

High-Level Languages, SA22-7613

v z/OS MVS Programming: Extended Addressability

Guide, SA22-7614

v z/OS MVS Programming: Sysplex Services Guide,

SA22-7617

v z/OS MVS Programming: Sysplex Services

Reference, SA22-7618

v z/OS MVS Programming: Workload Management

Services, SA22-7619

v z/OS MVS Recovery and Reconfiguration Guide,

SA22-7623

v z/OS MVS Routing and Descriptor Codes,

SA22-7624

v z/OS MVS Setting Up a Sysplex, SA22-7625

v z/OS MVS System Codes SA22-7626

v z/OS MVS System Commands, SA22-7627

v z/OS MVS System Messages Volumes 1-10,

SA22-7631, SA22-7632, SA22-7633, SA22-7634,

SA22-7635, SA22-7636, SA22-7637, SA22-7638,

SA22-7639, and SA22-7640

v z/OS MVS Using the Subsystem Interface,

SA22-7642

v z/OS Planning for Multilevel Security and the

Common Criteria, SA22-7509

v z/OS RMF User's Guide, SC33-7990

v z/OS Security Server Network Authentication

Server Administration, SC24-5926

v z/OS Security Server RACF Auditor's Guide,

SA22-7684

v z/OS Security Server RACF Command Language

Reference, SA22-7687

v z/OS Security Server RACF Macros and Interfaces,

SA22-7682

v z/OS Security Server RACF Security

Administrator's Guide, SA22-7683

v z/OS Security Server RACF System Programmer's

Guide, SA22-7681

v z/OS Security Server RACROUTE Macro

Reference, SA22-7692

v z/OS Support for Unicode: Using Conversion

Services, SA22-7649

v z/OS TSO/E CLISTs, SA22-7781

v z/OS TSO/E Command Reference, SA22-7782

376 Application Programming Guide and Reference for Java™

v z/OS TSO/E Customization, SA22-7783

v z/OS TSO/E Messages, SA22-7786

v z/OS TSO/E Programming Guide, SA22-7788

v z/OS TSO/E Programming Services, SA22-7789

v z/OS TSO/E REXX Reference, SA22-7790

v z/OS TSO/E User's Guide, SA22-7794

v z/OS UNIX System Services Command Reference,

SA22-7802

v z/OS UNIX System Services Messages and Codes,

SA22-7807

v z/OS UNIX System Services Planning, GA22-7800

v z/OS UNIX System Services Programming:

Assembler Callable Services Reference, SA22-7803

v z/OS UNIX System Services User's Guide,

SA22-7801

Bibliography 377

378 Application Programming Guide and Reference for Java™

Index

A
accessing packages

JDBC 8

SQLJ 64

assignment clause
SQLJ 140

attachment facilities
description 298

RRSAF 298

automatically generated keys
retrieving in JDBC application 34

B
batch queries

JDBC 43

batch updates
JDBC 41

SQLJ 97

C
CallableStatement

calling stored procedures 21

calling stored procedures
CallableStatement 21

CICS
abends 331

attaching to DB2 330

autoCommit default 331

closing JDBC connection 331

Connection with default URL 331

db2genJDBC parameters 330

number of cursors 330

run-time properties file 329

running traces 331

special considerations 329

closing connection
importance of 16, 73

collecting trace data
SQLJ 317

com.ibm.db2.jcc.DB2BaseDataSource class
DB2 Universal JDBC Driver-only methods 165

DB2 Universal JDBC Driver-only properties 165

com.ibm.db2.jcc.DB2Connection interface
DB2 Universal JDBC Driver-only methods 167

com.ibm.db2.jcc.DB2Diagnosable interface
DB2 Universal JDBC Driver-only methods 172

com.ibm.db2.jcc.DB2ExceptionFormatter class
DB2 Universal JDBC Driver-only methods 172

com.ibm.db2.jcc.DB2JccDataSource interface
DB2 Universal JDBC Driver-only methods 173

com.ibm.db2.jcc.DB2PreparedStatement interface
DB2 Universal JDBC Driver-only methods 173

com.ibm.db2.jcc.DB2RowID interface
DB2 Universal JDBC Driver-only methods 173

com.ibm.db2.jcc.DB2SimpleDataSource
definition 49

com.ibm.db2.jcc.DB2SimpleDataSource class
DB2 Universal JDBC Driver-only methods 174

com.ibm.db2.jcc.DB2SimpleDataSource class (continued)
DB2 Universal JDBC Driver-only properties 174

com.ibm.db2.jcc.DB2Sqlca class
DB2 Universal JDBC Driver-only methods 174

com.ibm.db2.jcc.DB2Statement interface
DB2 Universal JDBC Driver-only methods 175

com.ibm.db2.jcc.DB2SystemMonitor interface
DB2 Universal JDBC Driver-only methods 176

COM.ibm.db2.jdbc.DB2ConnectionPoolDataSource
definition 49

comment
SQLJ 66

commit
transaction, JDBC 16

comparison of driver support
JDBC APIs 107

configuration properties
parameters 253

configuring
JDBC 253, 281

SQLJ 253, 281

connecting to a data source
DataSource interface 12

multiple context support, JDBC/SQLJ Driver for OS/390

and z/OS 309

SQLJ 66

connection concentrator
DB2 Universal JDBC Driver 311

connection context
class 66

closing 73

default 66

object 66

connection declaration clause
SQLJ 135

connection object 309

connection pooling
overview 299

connection sharing 310

context clause
SQLJ 138

creating
DB2 tables, SQLJ 73

creating and deploying
DataSource objects 49

creating DBRMs
SQLJ 242

customizing a serialized profile
SQLJ 224, 242

customizing Java environment 253, 281

D
data source

connecting to using JDBC 8

connecting using DriverManager 10

connecting using JDBC DataSource 12

connecting using JDBC DriverManager 54

data type mappings
Java, JDBC, and SQL 127

© Copyright IBM Corp. 1998, 2006 379

DatabaseMetaData
retrieving data source information, JDBC 39

DataSource interface
SQLJ 68

DataSource objects
creating and deploying 49

DB2 Universal JDBC Driver
connecting to a data source

DriverManager interface 10

DB2T4XAIndoubtUtil 267

determining version 184

encrypted user ID or encrypted password security 292

example, trace program 320

example, tracing with configuration parameters 319

extended client information 50

handling SQLException 22

JDBC extensions 165

Kerberos security 293

LOB support, JDBC 28

LOB support, SQLJ 89

properties 185

return codes, internal errors 183

security 289

SQLSTATEs, internal errors 183

user ID and password security 290

user ID-only security 291

DB2 Universal JDBC Driver type 2 connectivity
when to use 14

DB2 Universal JDBC Driver type 4 connectivity
when to use 14

DB2 Universal JDBC Driver-only methods
com.ibm.db2.jcc.DB2BaseDataSource class 165

com.ibm.db2.jcc.DB2Connection interface 167

com.ibm.db2.jcc.DB2Diagnosable interface 172

com.ibm.db2.jcc.DB2ExceptionFormatter class 172

com.ibm.db2.jcc.DB2JccDataSource interface 173

com.ibm.db2.jcc.DB2PreparedStatement interface 173

com.ibm.db2.jcc.DB2RowID interface 173

com.ibm.db2.jcc.DB2SimpleDataSource class 174

com.ibm.db2.jcc.DB2sqlca class 174

com.ibm.db2.jcc.DB2Statement interface 175

com.ibm.db2.jcc.DB2SystemMonitor interface 176

DB2 Universal JDBC Driver-only properties
com.ibm.db2.jcc.DB2BaseDataSource class 165

com.ibm.db2.jcc.DB2SimpleDataSource class 174

DB2Diagnosable class
retrieving the SQLCA 84

db2profc command
options 242

parameters 242

db2sqljcustomize command
options 224

parameters 224

db2sqljprint
formation JCC customized profile 319

DB2T4XAIndoubtUtil
distributed transactions with DB2 UDB for OS/390 and

z/OS V7 267

DBINFO clause
CREATE FUNCTION statement 209

CREATE PROCEDURE statement 209

declaring
variables in a JDBC application 8

default connection context 66

diagnosing JDBC problems 317

diagnosing SQLJ problems 317, 325

diagnosis utilities
SQLJ 326

distinct type
using in JDBC application 32

using in SQLJ application 94

distributed transaction
JDBC and SQLJ 301

driver version
DB2 Universal JDBC Driver 184

DriverManager interface
SQLJ 66

DYNAMICRULES(BIND)
recommended for SQLJ programs 245

E
encrypted security-sensitive data

DB2 Universal JDBC Driver 292

encrypted user ID or encrypted password security
DB2 Universal JDBC Driver 292

environment
Java stored procedure 199

Java user-defined function 199

environment variables
JDBC 253, 281

SQLJ 253, 281

error handling
SQLJ 84

executable clause
SQLJ 137

executing SQL
JDBC 17

SQLJ 73

execution context 95

execution control
SQLJ 95

extended client information
DB2 Universal JDBC Driver 50

EXTERNAL
clause of CREATE FUNCTION statement 206

clause of CREATE PROCEDURE statement 206

F
FFFFF SQLSTATE

meaning for JDBC programs 58

meaning for SQLJ programs 325

FINAL CALL clause
CREATE FUNCTION statement 209

formatting trace data
SQLJ 325

G
global transaction

JDBC and SQLJ 307

glossary 337

graphic string constant
JDBC application 60

SQLJ application 93

H
host expression

SQLJ 64, 132

380 Application Programming Guide and Reference for Java™

I
identity column

retrieving in JDBC application 34

implements clause
SQLJ 133

installation
DB2 Universal JDBC Driver 251

JDBC/SQLJ Driver for OS/390 and z/OS 279

interpreted Java stored procedure
program preparation 245

interpreted Java user-defined function
program preparation 245

isolation level
JDBC 15

SQLJ 71

iterator
for positioned DELETE 78

for positioned UPDATE 78

obtaining JDBC result sets from 86

iterator conversion clause
SQLJ 141

iterator declaration clause
SQLJ 136

J
JAR file

creating for JDBC routine 247

creating for SQLJ routine 248

defining to DB2 206

Java application
customizing environment 253, 281

Java stored procedure
defining to DB2 206

differences from Java program 214

differences from other stored procedures 214

parameters specific to 206

writing 214

Java thread 309

Java user-defined function
defining to DB2 206

differences from Java program 214

differences from other user-defined functions 214

parameters specific to 206

writing 214

JDBC
accessing packages for 8

batch queries 43

batch updates 41

configuring 253, 281

connection concentrator 311

data type mappings 127

environment variables 253, 281

executing SQL 17

handling SQLWarning 26, 58

installation, DB2 Universal JDBC Driver 251

installation, JDBC/SQLJ Driver for OS/390 and z/OS 279

isolation level 15

problem diagnosis 317

ResultSet holdability 45, 46

running a program 249

sample program 272, 288

scrollable ResultSet 45, 46

Sysplex workload balancing 311

updatable ResultSet 45, 46

JDBC APIs
comparison of driver support 107

JDBC application
basic steps 5

declaring variables 8

example 5

JDBC connection
using 16

JDBC drivers
JDBC differences 179

SQLJ differences 182

JDBC extensions
DB2 Universal JDBC Driver 165

JDBC transaction
commiting 16

rolling back 16

JDBC/SQLJ Driver for OS/390 and z/OS
security 298

JDBC/SQLJ Driver for OS/390 and z/OS multiple context

support
description 309

K
Kerberos security

DB2 Universal JDBC Driver 293

L
LANGUAGE

clause of CREATE FUNCTION statement 206

clause of CREATE PROCEDURE statement 206

LOB column
choosing compatible Java data types, SQLJ 89

choosing compatible Java™ data types, JDBC 29

LOB locator
DB2 Universal JDBC Driver 89

LOB support
beyond JDBC specification 28, 58

DB2 Universal JDBC Driver, JDBC 28

DB2 Universal JDBC Driver, SQLJ 89

LOB locator 28, 58

M
modifying

DB2 tables, SQLJ 73

multiple context support
connecting when enabled 310

connecting when not enabled 309

enabling 310

multiple result sets
retrieving from a stored procedure 95

retrieving, JDBC 36

multithreading 298

N
named iterator

passed as variable 100

result set iterator 74

NO SQL
clause of CREATE FUNCTION statement 208

clause of CREATE PROCEDURE statement 208

notices, legal 333

Index 381

O
online checking

for better optimization 233, 244

needed during customization 233, 244

restriction 233, 244

P
PARAMETER STYLE

clause of CREATE FUNCTION statement 208

clause of CREATE PROCEDURE statement 208

ParameterMetaData
retrieving parameter information, JDBC 40

positioned delete
SQLJ 78

positioned iterator
passed as variable 100

result set iterator 76

positioned update
SQLJ 78

PreparedStatement methods
SQL statements with no parameter markers 20

SQL statements with parameter markers 19, 20

problem diagnosis
JDBC 317

SQLJ 317, 325

program preparation
interpreted Java stored procedure 245

interpreted Java stored procedure with no SQLJ 245

interpreted Java stored procedure with SQLJ 246

interpreted Java user-defined function 245

interpreted Java user-defined function with no SQLJ 245

interpreted Java user-defined function with SQLJ 246

SQLJ 219

PROGRAM TYPE clause
CREATE FUNCTION statement 208

CREATE PROCEDURE statement 208

properties
configuration

parameters 253

DB2 Universal JDBC Driver 185

run-time
CICS 329

parameters 281

R
releasing resources

closing connection 16, 73

restrictions
SQLJ variable names 65

result set iterator
definition and use in same file 75

description 74

named iterator 74

positioned iterator 76

public declaration in separate file 75, 86

restrictions on declaration 77

retrieving rows in SQLJ 74, 76

ResultSet holdability
JDBC 45, 46

ResultSetMetaData
retrieving result set information, JDBC 38

retrieving
data from DB2 tables, JDBC 18

retrieving data
from DB2 tables, SQLJ 74

using multiple instances of an iterator, SQLJ 83

using multiple iterators on a DB2® table, SQLJ 81

retrieving data from DB2 tables
JDBC 20

retrieving data source information
JDBC 39

retrieving parameter information
JDBC 40

retrieving result set information
JDBC 38

retrieving the SQLCA
DB2Diagnosable class 84

return codes
DB2 Universal JDBC Driver errors 183

roll back
transaction, JDBC 16

ROWID
DB2 Universal JDBC Driver 31, 92

RRSAF 298

RUN OPTIONS clause
CREATE FUNCTION statement 208

CREATE PROCEDURE statement 208

run-time properties file
CICS 329

parameters 281

running a program
SQLJ and JDBC 249

S
sample program

JDBC 272, 288

savepoint
using in JDBC application 33

using in SQLJ application 72

SCRATCHPAD clause
CREATE FUNCTION statement 208

scrollable iterator
SQLJ 102

scrollable ResultSet
JDBC 45, 46

security
DB2 Universal JDBC Driver 289

JDBC/SQLJ Driver for OS/390 and z/OS 298

SQLJ program preparation 296

SECURITY
clause of CREATE FUNCTION 209

clause of CREATE PROCEDURE 209

security, encrypted security-sensitive data
DB2 Universal JDBC Driver 292

security, encrypted user ID or encrypted password
DB2 Universal JDBC Driver 292

security, Kerberos
DB2 Universal JDBC Driver 293

security, user ID and password
DB2 Universal JDBC Driver 290

security, user ID-only
DB2 Universal JDBC Driver 291

serialized profile
customizing 224, 242

SET TRANSACTION clause
SQLJ 140

SQL error
using staticPositioned 244

382 Application Programming Guide and Reference for Java™

SQL statement
handling errors in SQLJ 84

SQLException
handling with DB2 Universal JDBC Driver 22

SQLJ
accessing packages for 64

assignment clause 140

batch updates 97

calling a stored procedure 83

collecting trace data 317

comment 66

connecting to a data source 66

connection declaration clause 135

context clause 138

creating and modifying DB2 tables 73

creating DBRMs 242

db2profc command 242

db2sqljcustomize command 224

environment variables 253, 281

error handling 84

executable clause 137

executing SQL 73

execution control 95

formatting data 325

handling SQLWarning 85

host expression 64, 132

implements clause 133

installation, DB2 Universal JDBC Driver 251

installation, JDBC/SQLJ Driver for OS/390 and z/OS 279

installing the run-time environment 253, 281

isolation level 71

iterator conversion clause 141

iterator declaration clause 136

multiple instances of an iterator 83

multiple iterators on a table 81

problem diagnosis 317, 325

program preparation 219

result set iterator 74

retrieving the SQLCA 84

running a program 249

running diagnosis utilities 317, 325

scrollable iterator 102

security, program preparation 296

SET TRANSACTION clause 140

translating source code 220, 239

using DataSource interface 68

using default connection 71

using DriverManager interface 66

with clause 134

SQLJ application
basic steps 61

example 61

SQLJ clause 132

SQLJ execution context 95

SQLJ variable names
restrictions 65

sqlj.runtime.AsciiStream 153, 163

sqlj.runtime.BinaryStream 154

sqlj.runtime.CharacterStream 154

sqlj.runtime.ConnectionContext
methods called in applications 143

sqlj.runtime.ExecutionContext
methods called in applications 155

sqlj.runtime.ForUpdate
for positioned UPDATE and DELETE 147

sqlj.runtime.NamedIterator
methods called in applications 147

sqlj.runtime.PositionedIterator
methods called in applications 148

sqlj.runtime.ResultSetIterator
methods called in applications 148

sqlj.runtime.Scrollable
methods called in applications 151

sqlj.runtime.SQLNullException 163

sqlj.runtime.UnicodeStream 164

SQLSTATE FFFFF
meaning for JDBC programs 58

meaning for SQLJ programs 325

SQLSTATEs
DB2 Universal JDBC Driver errors 183

SQLWarning
handling in JDBC 26, 58

handling in SQLJ 85

SSID
how the DB2 Universal JDBC Driver determines 259

how the JDBC/SQLJ Driver for OS/390 and z/OS

determines 283

Statement.executeQuery
retrieving data from DB2 tables 18

staticPositioned
implications of using 244

stored procedure
access to z/OS UNIX System Services 209

calling, SQLJ 83

Java 199

retrieving multiple result sets, JDBC 36

retrieving result sets 95

returning result set 216

syntax diagram
how to read ix

Sysplex workload balancing
DB2 Universal JDBC Driver 311

system monitor
DB2 Universal JDBC Driver 51

T
thread, Java 309

trace program
DB2 Universal JDBC Driver, example 320

tracing with configuration parameters
DB2 Universal JDBC Driver, example 319

translating source code
SQLJ 220, 239

U
updatable ResultSet

JDBC 45, 46

updating data in DB2 tables
JDBC 19

user ID and password security
DB2 Universal JDBC Driver 290

user ID-only security
DB2 Universal JDBC Driver 291

user-defined function
access to z/OS UNIX System Services 209

Java 199

W
WebSphere 310

Index 383

with clause
SQLJ 134

with positioned iterators 76

WLM ENVIRONMENT
clause of CREATE FUNCTION statement 208

clause of CREATE PROCEDURE statement 208

Z
z/OS UNIX System Services

authority to access 209

384 Application Programming Guide and Reference for Java™

Readers’ Comments — We’d Like to Hear from You

DB2 Universal Database for z/OS

Application Programming

Guide and Reference

FOR JAVA
™

Version 8

 Publication No. SC18-7414-03

 Overall, how satisfied are you with the information in this book?

 Very Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Overall satisfaction h h h h h

 How satisfied are you that the information in this book is:

 Very Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

 Please tell us how we can improve this book:

 Thank you for your responses. May we contact you? h Yes h No

 When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you.

 Name

Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
 SC18-7414-03

SC18-7414-03

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines

Corporation

Reader Comments

DTX/E269

555 Bailey Avenue

San Jose, CA 95141-9989

U. S. A.

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5625-DB2

Printed in USA

SC18-7414-03

	Contents
	About this book
	Who should read this book
	Terminology and citations
	How to read the syntax diagrams
	Accessibility
	How to send your comments

	Summary of changes to this book
	Chapter 1. Introduction to Java application support
	Chapter 2. JDBC application programming
	Basic JDBC application programming concepts (for all DB2 UDB for z/OS JDBC drivers)
	Basic steps in writing a JDBC application
	Java packages for JDBC support
	Variables in JDBC applications
	How JDBC applications connect to a data source
	Connecting to a data source using the DriverManager interface with the DB2 Universal JDBC Driver
	Connecting to a data source using the DataSource interface
	How to determine which type of DB2 Universal JDBC Driver connectivity to use
	Setting the isolation level for a JDBC transaction
	JDBC connection objects
	Committing or rolling back JDBC transactions
	Closing a connection to a JDBC data source
	JDBC interfaces for executing SQL
	Creating and modifying DB2 objects using the Statement.executeUpdate method
	Retrieving data from DB2 tables using the Statement.executeQuery method
	Updating data in DB2 tables using the PreparedStatement.executeUpdate method
	Retrieving data from DB2 using the PreparedStatement.executeQuery method
	Calling stored procedures using CallableStatement methods
	Handling an SQLException under the DB2 Universal JDBC Driver
	Handling an SQLWarning under the DB2 Universal JDBC Driver

	Advanced JDBC application programming concepts
	LOBs in JDBC applications with the DB2 Universal JDBC Driver
	Java data types for retrieving or updating LOB column data in JDBC applications
	ROWIDs in JDBC with the DB2 Universal JDBC Driver
	Distinct types in JDBC applications
	Savepoints in JDBC applications
	Retrieving identity column values in JDBC applications
	Retrieving multiple result sets from a stored procedure in a JDBC application
	Learning about a ResultSet using ResultSetMetaData methods
	Learning about a data source using DatabaseMetaData methods
	Learning about parameters in a PreparedStatement using ParameterMetaData methods
	Making batch updates in JDBC applications
	Making batch queries in JDBC applications
	Retrieving information from a BatchUpdateException
	Characteristics of a JDBC ResultSet under the DB2 Universal JDBC Driver
	Specifying updatability, scrollability, and holdability for ResultSets in JDBC applications
	Creating and deploying DataSource objects
	Providing extended client information to the DB2 server with the DB2 Universal JDBC Driver
	System monitoring for the DB2 Universal JDBC Driver

	JDBC application programming concepts for the JDBC/SQLJ Driver for OS/390 and z/OS
	Connecting to a data source using the DriverManager interface with a JDBC/SQLJ Driver for OS/390 and z/OS
	Handling an SQLException under the JDBC/SQLJ Driver for OS/390 and z/OS
	Handling an SQLWarning under the JDBC/SQLJ Driver for OS/390 and z/OS
	Using LOBs in JDBC applications with the JDBC/SQLJ Driver for OS/390 and z/OS
	Using ROWIDs with the JDBC/SQLJ Driver for OS/390 and z/OS
	Using graphic string constants in JDBC applications

	Chapter 3. SQLJ application programming
	Basic SQLJ application programming concepts
	Basic steps in writing an SQLJ application
	Java packages for SQLJ support
	Variables in SQLJ applications
	Comments in an SQLJ application
	Connecting to a data source using SQLJ
	Setting the isolation level for an SQLJ transaction
	Committing or rolling back SQLJ transactions
	Savepoints in SQLJ applications
	Closing the connection to a data source in an SQLJ application
	SQL statements in an SQLJ application
	Creating and modifying DB2 objects in an SQLJ application
	How an SQLJ application retrieves data from DB2 tables
	Using a named iterator in an SQLJ application
	Using a positioned iterator in an SQLJ application
	Performing positioned UPDATE and DELETE operations in an SQLJ application
	Multiple open iterators for the same SQL statement in an SQLJ application
	Multiple open instances of an iterator in an SQLJ application
	Calling stored procedures in an SQLJ application
	Handling SQL errors in an SQLJ application
	Handling SQL warnings in an SQLJ application

	Advanced SQLJ application programming concepts
	Using SQLJ and JDBC in the same application
	LOBs in SQLJ applications with the DB2 Universal JDBC Driver
	Java data types for retrieving or updating LOB column data in SQLJ applications
	Using LOBs in SQLJ applications with the JDBC/SQLJ Driver for OS/390 and z/OS
	ROWIDs in SQLJ with the DB2 Universal JDBC Driver
	Using graphic string constants in SQLJ applications
	Distinct types in SQLJ applications
	Controlling the execution of SQL statements in SQLJ
	Retrieving multiple result sets from a stored procedure in an SQLJ application
	Making batch updates in SQLJ applications
	Iterators as passed variables for positioned UPDATE or DELETE operations in an SQLJ application
	Using scrollable iterators in an SQLJ application

	Chapter 4. JDBC and SQLJ reference
	Comparison of driver support for JDBC APIs
	Java, JDBC, and SQL data types
	SQLJ syntax
	SQLJ clause
	SQLJ host-expression
	SQLJ implements-clause
	SQLJ with-clause
	SQLJ connection-declaration-clause
	SQLJ iterator-declaration-clause
	SQLJ executable-clause
	SQLJ context-clause
	SQLJ statement-clause
	SQLJ SET-TRANSACTION-clause
	SQLJ assignment-clause
	SQLJ iterator-conversion-clause

	sqlj.runtime reference
	Summary of interfaces and classes in the sqlj.runtime package
	sqlj.runtime.ConnectionContext interface
	sqlj.runtime.ForUpdate interface
	sqlj.runtime.NamedIterator interface
	sqlj.runtime.PositionedIterator interface
	sqlj.runtime.ResultSetIterator interface
	sqlj.runtime.Scrollable interface
	sqlj.runtime.AsciiStream class
	sqlj.runtime.BinaryStream class
	sqlj.runtime.CharacterStream class
	sqlj.runtime.ExecutionContext class
	sqlj.runtime.SQLNullException class
	sqlj.runtime.StreamWrapper class
	sqlj.runtime.UnicodeStream class

	DB2 Universal JDBC Driver reference information
	DB2 Universal JDBC Driver extensions to JDBC
	JDBC differences between the DB2 Universal JDBC Driver and other DB2 JDBC drivers
	SQLJ differences between the DB2 Universal JDBC Driver and other DB2 JDBC drivers
	Error codes issued by the DB2 Universal JDBC Driver
	SQLSTATEs issued by the DB2 Universal JDBC Driver
	How to find DB2 Universal JDBC Driver version and environment information
	Properties for the DB2 Universal JDBC Driver

	DataSource properties for the JDBC/SQLJ 2.0 Driver for OS/390 and z/OS

	Chapter 5. Creating Java stored procedures and user-defined functions
	Setting up the environment for interpreted Java routines
	Prerequisites for interpreted Java routines
	Setting up the WLM application environment for interpreted Java routines
	Creating the WLM address space startup procedure
	Defining the WLM application environment

	Setting the run-time environment for interpreted Java stored procedures

	Defining a Java routine to DB2
	Defining a JAR file for a Java routine to DB2
	Calling SQLJ.INSTALL_JAR
	SQLJ.INSTALL_JAR authorization
	SQLJ.INSTALL_JAR syntax
	SQLJ.INSTALL_JAR parameters

	Calling SQLJ.REPLACE_JAR
	SQLJ.REPLACE_JAR authorization
	SQLJ.REPLACE_JAR syntax
	SQLJ.REPLACE_JAR parameters

	Calling SQLJ.REMOVE_JAR
	SQLJ.REMOVE_JAR authorization
	SQLJ.REMOVE_JAR syntax
	SQLJ.REMOVE_JAR parameters

	Calling SQLJ.DB2_INSTALL_JAR
	SQLJ.DB2_INSTALL_JAR authorization
	SQLJ.DB2_INSTALL_JAR syntax
	SQLJ.DB2_INSTALL_JAR parameters

	Calling SQLJ.DB2_REPLACE_JAR
	SQLJ.DB2_REPLACE_JAR authorization
	SQLJ.DB2_REPLACE_JAR syntax
	SQLJ.DB2_REPLACE_JAR parameters

	Writing a Java routine
	Differences between Java routines and stand-alone Java programs
	Differences between Java routines and other routines
	Using static and non-final variables in a Java routine
	Writing a Java stored procedure to return result sets

	Testing a Java routine

	Chapter 6. Preparing and running JDBC and SQLJ programs
	Preparing JDBC programs for execution
	Preparing SQLJ programs for execution under the DB2 Universal JDBC Driver
	Translating and compiling SQLJ source code under the DB2 Universal JDBC Driver
	sqlj syntax
	sqlj parameter descriptions
	sqlj output

	Customizing an SQLJ serialized profile under the DB2 Universal JDBC Driver
	db2sqljcustomize authorization
	db2sqljcustomize syntax
	db2sqljcustomize parameter descriptions
	db2sqljcustomize output
	db2sqljcustomize usage notes

	Binding packages after running db2sqljcustomize
	db2sqljbind syntax
	db2sqljbind parameter descriptions
	db2sqljbind usage notes

	Preparing SQLJ programs for execution under the JDBC/SQLJ Driver for OS/390 and z/OS
	Translating and compiling SQLJ source code
	sqlj syntax
	sqlj parameter descriptions
	sqlj output

	Customizing an SQLJ serialized profile under the JDBC/SQLJ Driver for OS/390 and z/OS
	db2profc Syntax
	db2profc parameter descriptions
	db2profc output
	db2profc usage notes

	Binding packages and plans after running db2profc

	Preparing Java routines for execution
	Preparing interpreted Java routines with no SQLJ statements
	Preparing interpreted Java routines with SQLJ statements
	Creating JAR files for Java routines
	Example of preparing a Java routine for execution

	Running JDBC and SQLJ programs

	Chapter 7. Installing the DB2 Universal JDBC Driver
	Installing the DB2 Universal JDBC Driver as part of a DB2 installation
	Loading the DB2 Universal JDBC Driver libraries
	Setting environment variables for the DB2 Universal JDBC Driver
	DB2 Universal JDBC Driver configuration properties customization
	Enabling the DB2-supplied stored procedures and defining the tables used by the DB2 Universal JDBC Driver
	Creating the WLM address space startup procedure for the DB2 Universal JDBC Driver stored procedures
	Defining the WLM application environment for the the DB2 Universal JDBC Driver stored procedures
	Defining the DB2 Universal JDBC Driver stored procedures to DB2 and creating the stored procedure packages

	Binding the packages for the DB2 Universal JDBC Driver
	DB2binder syntax
	DB2Binder parameter descriptions
	DB2Binder example

	DB2T4XAIndoubtUtil for distributed transactions with DB2 UDB for OS/390 and z/OS Version 7 servers
	Converting JDBC/SQLJ Driver for OS/390 and z/OS serialized profiles for the DB2 Universal JDBC Driver
	db2sqljupgrade syntax
	db2sqljupgrade parameter descriptions
	db2sqljupgrade usage notes

	Enabling retrieval of DBCLOB columns with LOB locators on DB2 UDB for OS/390 and z/OS servers
	DB2LobTableCreator syntax
	DB2LobTableCreator parameter descriptions
	DB2LobTableCreator example

	Verifying the installation of the DB2 Universal JDBC Driver

	Installing the z/OS Application Connectivity to DB2 for z/OS feature
	Loading the z/OS Application Connectivity to DB2 for z/OS libraries
	Setting environment variables for the z/OS Application Connectivity to DB2 for z/OS feature

	Chapter 8. Installing the JDBC/SQLJ Driver for OS/390 and z/OS
	Loading the JDBC and SQLJ libraries
	Setting DB2 subsystem parameters for SQLJ support
	Setting environment variables for the JDBC/SQLJ Driver for OS/390 and z/OS
	The SQLJ/JDBC run-time properties file
	Properties in the JDBC/SQLJ Driver for OS/390 and z/OS SQLJ/JDBC run-time properties file
	Customizing the JDBC profile (optional)
	Syntax
	Parameter descriptions
	Output

	Binding the DBRMs
	Verifying the installation of the JDBC/SQLJ Driver for OS/390 and z/OS

	Chapter 9. JDBC and SQLJ security
	Security under the DB2 Universal JDBC Driver
	User ID and password security under the DB2 Universal JDBC Driver
	User ID-only security under the DB2 Universal JDBC Driver
	Encrypted user ID security and encrypted password security under the DB2 Universal JDBC Driver
	Kerberos security under the DB2 Universal JDBC Driver
	Security for preparing SQLJ applications with the DB2 Universal JDBC Driver
	Security under the JDBC/SQLJ Driver for OS/390 and z/OS
	Determining an authorization ID with the JDBC/SQLJ Driver for OS/390 and z/OS
	DB2 attachment types and security

	Chapter 10. JDBC and SQLJ connection pooling support
	Chapter 11. Universal Driver type 4 connectivity JDBC and SQLJ distributed transaction support
	Example of a distributed transaction that uses JTA methods

	Chapter 12. JDBC and SQLJ global transaction support
	Chapter 13. Multiple z/OS context support in JDBC/SQLJ Driver for OS/390 and z/OS
	Connecting when multiple z/OS context support is not enabled
	Connecting when multiple z/OS context support is enabled
	Enabling multiple z/OS context support
	Multiple context performance
	Connection sharing

	Chapter 14. DB2 Universal JDBC Driver support for connection concentrator and Sysplex workload balancing
	JDBC connection concentrator and Sysplex workload balancing
	Example of enabling the DB2 Universal JDBC Driver connection concentrator and Sysplex workload balancing
	Techniques for monitoring DB2 Universal JDBC Driver connection concentrator and Sysplex workload balancing

	Chapter 15. Diagnosing JDBC and SQLJ problems
	JDBC and SQLJ problem diagnosis with the DB2 Universal JDBC Driver
	Example of using configuration properties to start a JDBC trace
	Example of a trace program under the DB2 Universal JDBC Driver
	Formatting trace data for C/C++ native driver code with the DB2 Universal JDBC Driver
	Diagnosing SQLJ problems with the JDBC/SQLJ Driver for OS/390 and z/OS
	Formatting trace data with the JDBC/SQLJ Driver for OS/390 and z/OS
	Running utilities to format diagnostic data
	Using the profp utility to format information about a serialized profile
	Using the db2profp utility to format information about a JDBC/SQLJ Driver for OS/390 and z/OS customized profile

	Appendix. Special considerations for CICS applications
	Choosing parameter values for the SQLJ/JDBC run-time properties file
	Choosing parameter values for the db2genJDBC utility
	Choosing the number of cursors for JDBC result sets
	Setting environment variables for the CICS environment
	Connecting to DB2 in the CICS environment
	Commit and rollback processing in CICS SQLJ and JDBC applications
	Abnormal terminations in the CICS attachment facility
	Running traces in a CICS environment

	Notices
	Programming interface information
	Trademarks

	Glossary
	Bibliography
	Index
	Readers’ Comments — We'd Like to Hear from You

